

- 1 Using observed urban NO_x sinks to constrain VOC reactivity and the ozone and radical
- 2 budget in the Seoul Metropolitan Area
- 3 Benjamin A. Nault^{1,2,*}, Katherine R. Travis³, James H. Crawford³, Donald R. Blake⁴, Pedro
- 4 Campuzano-Jost⁵, Ronald C. Cohen⁶, Joshua P. DiGangi³, Glenn S. Diskin³, Samuel R. Hall⁷, L.
- 5 Gregory Huey⁸, Jose L. Jimenez⁵, Kyung-Eun Kim⁹, Young Ro Lee^{8,a}, Isobel J. Simpson⁴, Kirk
- 6 Ullmann⁷, Armin Wisthaler^{10,11}
- ¹CACC, Aerodyne Research, Inc., Billerica, MA, USA
- 8 ²Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore,
- 9 MD, USA
- ³NASA Langley Research Center, Hampton, VA, USA
- ⁴Department of Chemistry, University of California, Irvine, CA, USA
- 12 ⁵CIRES and Department of Chemistry, University of Colorado, Boulder, CO, USA
- 13 ⁶Department of Chemistry, University of California, Berkeley, CA, USA
- ⁷Atmospheric Chemistry Observations & Modeling Laboratory, NCAR, Boulder, CO, USA
- 15 ⁸School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- 16 ⁹School of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science
- 17 and Technology, Gwangju, South Korea
- 18 ¹⁰University of Oslo, Oslo, Norway
- 19 ¹¹University of Innsbruck, Innsbruck, Austria

aNow at Division of Geological and Planetary Sciences, California Institute of Technology,
 Pasadena, CA, USA

2425

20

^{*}Corresponding author:

27 Email: bnault@aerodyne.com, bnault1@jh.edu

28 29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Abstract

Ozone (O₃) is an important secondary pollutant that impacts air quality and human health. Eastern Asia has high regional O₃ background due to the numerous sources and increasing and rapid industrial growth, which impacts the Seoul Metropolitan Area (SMA). However, SMA has also been experiencing increasing O₃ driven by decreasing NO_x emissions, highlighting the role of local, in-situ O₃ production on SMA. Here, comprehensive gas-phase measurements collected on the NASA DC-8 during the NIER/NASA Korea United States-Air Quality (KORUS-AQ) study are used to constrain the instantaneous O₃ production rate over the SMA. The observed NO_x oxidized products support the importance of non-measured peroxy nitrates (PNs) in the O₃ chemistry in SMA, as they accounted for ~49% of the total PNs. Using the total measured PNs (ΣPNs) and alkyl and multifunctional nitrates (ΣANs), unmeasured volatile organic compound (VOC) reactivity (R(VOC)) is constrained and found to range from $1.4 - 2.1 \text{ s}^{-1}$. Combining the observationally constrained R(VOC) with the other measurements on the DC-8, the instantaneous net O₃ production rate, which is as high as ~10 ppbv hr⁻¹, along with the important sinks of O₃ and radical chemistry, are constrained. This analysis shows that ΣPNs play an important role in both the sinks of O₃ and radical chemistry. Since ΣPNs are assumed to be in steady-state, the results here highlight the role ΣPNs play in urban environments in reducing net O_3 production, but ΣPNs can potentially lead to increased net O₃ production downwind due to their short lifetime (~1 hr). The results provide guidance for future measurements to identify the missing R(VOCs) and ΣPNs production.

Short Summary

- Ozone (O₃) is a pollutant formed from the reactions of gases emitted from various sources. In
- 52 urban areas, the density of human activities can increase the O₃ formation rate (P(O₃)); thus, impact
- air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O₃).
- A high local P(O₃) was found; however, local P(O₃) was partly reduced due to compounds typically
- 55 ignored. These observations also provide constraints for unmeasured compounds that will impact
- 56 $P(O_3)$.

1. Introduction

58 Representing global and urban tropospheric ozone (O₃) in chemical transport models 59 (CTMs) is still challenging due to uncertainty in physical and chemical processes that control the 60 O₃ budget (Archibald et al., 2020). One area of uncertainty is underestimated urban volatile organic 61 compounds (VOCs) emissions (von Schneidemesser et al., 2023), which arise form a large number 62 of sources, including some that are very hard to quantify (e.g., cooking and chemical product) (e.g., McDonald et al., 2018; Simpson et al., 2020). Intensive research is also ongoing as to why 63 O₃ is increasing in recent years in urban areas, even with reductions in combustion emissions (e.g., 64 65 Lyu et al., 2017; Colombi et al., 2023). This O₃ impacts the large populations in urban areas with harmful health effects, including premature mortality (e.g., Cohen et al., 2017). 66 67 Tropospheric O_3 production is driven by the catalytic cycling of nitrogen oxides ($NO_x =$ 68 NO + NO₂) fueled by the photoxidation of VOCs, both of which can come from anthropogenic 69 emissions. The chemistry producing O₃ is described in R1 – R6 in Table 1. During daylight hours, 70 VOCs are oxidized by OH (or undergo photolysis) to form an organic peroxy radical (RO₂) in 71 R1a (R1b). If the RO₂ then proceeds through R2a, at least two O₃ molecules are produced. The 72 first O_3 molecule is formed by the photolysis of NO_2 and the reaction of $O(^3P)$ with oxygen (R3 – 73 R4). The second O₃ molecule is formed through the reaction of the alkoxy radical (RO) with 74 oxygen to form the hydroperoxyl radical (HO₂) (R5), which goes on to react with NO to produce 75 NO₂ (R6) and the subsequent reactions described above (R3 – R4). However, some fraction of the 76 time, depending on the number of carbons and functional group (e.g., Espada and Shepson, 2005; 77 Perring et al., 2013; Yeh and Ziemann, 2014), alkyl or multifunctional nitrates (ANs ≡ RONO₂) 78 are formed (R2b). The fraction of reactions to form ANs is described by the branching ratio, α . 79 Reaction R2b has been shown to impact O₃ production, depending on the types of VOC emitted,

80 by reducing the fraction of NO_2 that photolyzes to form O_3 in source regions (R3 – R4) (Farmer et 81 al., 2011). As α is a function of the individual VOC's carbon backbone and functional group (e.g., 82 Perring et al., 2013), any uncertainty related to primary VOC emissions and secondary chemistry 83 will directly impact the ability to describe urban O₃ production. 84 One important subclass of VOCs aldehydes (RCHO), which can either be directly emitted 85 or produced via photooxidation of VOCs (Mellouki et al., 2015; de Gouw et al., 2018; Yuan et al., 86 2012; Wang et al., 2022). The photooxidation of the aldehyde (R7) in the presence of NO_x can 87 either form acyl peroxy nitrates (R8, PNs = $R(O)O_2NO_2$) or an organic peroxy radical (RO_2) (R9). The competition between R8 to form PNs versus R9 to form RO₂ depends on the NO-to-NO₂ ratio 88 89 (Nihill et al., 2021). Further, R8 is in thermodynamic equilibrium due to the weak bond strength 90 between the acyl peroxy radical (R(O)O₂) and NO₂. Thus, formation of PNs pose only a temporary 91 loss of NO₂. Finally, it has been observed that aldehydes with longer carbon backbones (e.g., C8s 92 and C9s) from various anthropogenic activities, such as cooking (Coggon et al., 2024; Rao et al., 93 2010), may have mixing ratios as high as aldehydes typically quantified in field experiments 94 (acetaldehyde and propaldehyde). However, there is larger uncertainty associated with these higher 95 aldehydes in their fate to produce both PNs and ANs (e.g., Hurst Bowman et al., 2003). Missing 96 both these emissions and subsequent chemistry would impact estimates of urban O₃ chemistry. 97 The fraction of RO₂ forming ANs in R2b and the fraction of R(O)O₂ forming PNs in R8 98 alter the instantaneous O₃ production (P(O₃)) by removing NO₂ and/or the radical species. This is 99 further shown in Figure S1, where an analytical equation to describe R1 – R6 (Farmer et al., 2011), 100 is used to explore how changes in the VOC reactivity (R(VOC)), radical production (P(HO_x)), and 101 ANs production and branching ratio, α (R2b), impact the instantaneous P(O₃) (see Sect. S1 for the 102 analytical equation and description). Any changes in P(HO_x), R(VOC), and/or α will impact both

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

the instantaneous $P(O_3)$ as well as the NO_x mixing ratio corresponding to the maximum $P(O_3)$. As these parameters are generally interconnected, investigating all three is important to understand the sources and control of instantaneous P(O₃). Further, R7 – R9 are not included in this traditional description of the analytical equation, as it is assumed PNs are in steady-state (Farmer et al., 2011). Thus, if PNs are not in steady-state, their role in altering P(O₃) may be underestimated. Increasing surface O₃ is a concern throughout East Asia, including South Korea (Colombi et al., 2023; Gaudel et al., 2018; Kim et al., 2021; Yeo and Kim, 2021). The emissions associated with industry and other anthropogenic activities and the associated photochemistry have impacted regional air quality, leading to high O₃ backgrounds that can impact a country's ability to achieve reduced O₃ exposure for new air quality standards (e.g., Colombi et al., 2023). However, local emissions and photochemistry still play an important role. For example, during the Korea-United States Air Quality (KORUS-AQ) campaign, it was observed between morning and afternoon in the Seoul Metropolitan Area (SMA), O₃ increased by ~20 parts per billion by volume (ppbv) over a background concentration of over 75 ppbv (Crawford et al., 2021). Thus, an understanding of the variables highlighted in Figure S1 are necessary to control both local and regional P(O₃). One tool typically used to understand the role of regional O₃ and transported O₃ on local O_3 and impacts of local emission controls on O_3 are CTMs. As shown in Park et al. (2021), for the SMA, CTMs typically underestimate the observed O₃ and formaldehyde. While the low O₃ could be partially related to underestimated transport (e.g., Seo et al., 2018) or resolution of the CTM (e.g., Jo et al., 2023; Park et al., 2021), the low bias also observed for modeled formaldehyde indicates overall (a) too little VOCs and thus too low R(VOC) (Brune et al., 2022; H. Kim et al., 2022), (b) missing photochemical products from missing VOCs, including oxygenated VOCs

(OVOCs) that contribute to P(HO_x) (Brune et al., 2022; H. Kim et al., 2022; Lee et al., 2022; Wang

et al., 2022), and (c) likely missing PNs and ANs from the underestimated VOCs related to the underestimated R(VOC) (Lee et al., 2022; Park et al., 2021). Missing (a) – (c) will bias the instantaneous P(O₃) (Figure S1), impacting the ability to investigate what policies should be implemented to reduce O₃.

To better understand what controls the instantaneous P(O₃) over SMA, observations collected on the NASA DC-8 during KORUS-AQ are used to constrain the three variables highlighted in Figure S1—R(VOC), HO_x production and loss, and ANs and PNs production. Observational constraints on these three parameters provide a means to investigate the instantaneous P(O₃) over SMA and the major classes of contributors to O₃ and HO_x production and loss. These results are discussed and placed into the context of improving our knowledge about

2. Methods and Data Description

2.1 KORUS-AQ and DC-8 Descriptions

O₃ production in an urban environment.

The KORUS-AQ campaign was a multi-national project that was conducted in May – June, 2016, led by South Korea's National Institute of Environmental Research (NIER) and United States National Aeronautics and Space Administration (NASA). The project was conducted in South Korea and the surrounding seas with numerous airborne platforms, research vessels, and ground sites (Crawford et al., 2021). The study here focuses on the observations collected on the NASA DC-8.

The instrument payload, flights, and observations have been described in other studies (Crawford et al., 2021; Schroeder et al., 2020; Brune et al., 2022; Lee et al., 2022). Briefly, the DC-8 was stationed at Osan Air Force Base, Pyeongtaek, South Korea, which is approximately 60

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

km south of Seoul. A total of 20 research flights were conducted with the DC-8. Part of each research flights included a stereo-route in the SMA in the morning (~09:00 local time), midday (~12:00 local time), and afternoon (~15:00 local time), which included a missed approach over Seoul Air Base (< 15 km from Seoul city center) and a fly-over of the Olympic Park and Taehwa Forest Research sites (Figure 1). A total of 55 descents over Olympic Park and 53 spirals over Taehwa Forest Research site were conducted (Crawford et al., 2021). Only observations from the DC-8 after 11:00 local time are used here to ensure that the boundary layer has grown and stabilized and to minimize any influence from residual layer mixing into the boundary layer and/or titration of O₃ by NO (R10). We analyze data collected below 2 km and between 127.10 – 127.67°E and 37.22 – 37.69°N to focus on the boundary layer in the SMA without influence from industrial emissions along the western South Korean coast (Crawford et al., 2021). During KORUS-AQ, four different meteorological periods, as described by Peterson et al. (2019), impacted the region. These periods included a Dynamic period from 1-16 May, where there were a series of frontal passages; a Stagnant period from 17 – 22 May, where it was dry, clear, and stagnant; Transport/Haze period from 25 – 31 May, where long-range transport and hazy conditions with high humidity and cloud cover prevailed; and, a Blocking period from 1-7 June, where blocking conditions minimized transport (Peterson et al., 2019). However, as discussed in Sect. 3.2, conditions did not impact the general trends and chemistry and thus the whole campaign has been analyzed together. The observations used for the analysis are shown in Table 2, along with the associated references. The 1-min merged data from the DC-8 is used here (KORUS-AQ Science Team, 2023). For data missing due to frequency of measurements (e.g., VOCs from WAS), data was filled in a similar approach as Schroeder et al. (2020), in that VOCs with missing data were filled by the

linear relationship of that VOC with VOCs measured more frequently. This step was necessary for the observations used in the diel steady-state calculations described in Sect. 2.2. Note, the TD-LIF NO₂ (see Table 2) was used throughout this study and discussed in Sect. S2 and Figure S2 – S3 as it generally agreed better with steady-state calculated NO₂-to-NO ratios than the chemiluminescence NO₂.

2.2 F0AM Box Model Diel Steady-State Calculations for Missing Reactivity and

Peroxynitrate Budget Analysis

We use the F0AM box model (Wolfe et al., 2016) with chemistry from the MCMv3.3.1 (Jenkin et al., 2015) to simulate production of PNs and formaldehyde using 1-min merged data, as described in Sect. 2.1. As in Schroeder et al. (2020), we simulate each aircraft observation in diurnal cycle mode until the diurnal cycle for each species reaches convergence within 1%. We constrain concentrations of NO, O₃, H₂O₂, HNO₃, CO, CH₄, H₂, and all measured or estimated VOCs given in Table 2 and Table S1. We allow the model to freely calculate NO₂, formaldehyde, and all PNs, including PAN and PPN, for when calculating the budget of PNs. However, for the acyl peroxy radical mixing ratios to calculate O_x and HO_x budget (Sect. 2.3), PAN and PPN were constrained by observations. We use a dilution constant of 12 hours, according to Brune et al. (2022). Model evaluation is discussed in Sect. 3.4. The contribution of individual VOCs to PAN was calculated by reducing precursor VOCs by 20% and multiplying the resulting impact on the peroxy acetyl radical (CH₃C(O)O₂) by 5. Other acyl peroxy nitrates (higher PNs) are lumped into categories based on their primary precursor species from Table S2, species currently typically

196

measured (e.g., PPN) or contributes a large fraction of the total higher PNs budget (greater than

194 >2%; e.g., PHAN and MPAN).

2.3 Calculation of Instantaneous Ozone and HO_x Production and Loss

197 An experimental budget for the production and loss of O_x ($O_x = O_3 + NO_2$) and HO_x (HO_x 198 $= OH + HO_2 + RO_2 + R(O)O_2$) is described here. NO_2 and O_3 are combined to reduce any potential 199 impact from titration via O₃ reaction with NO (R10). The budget analysis includes field-measured 200 quantities (mixing ratios and photolysis rates, Table 2), results from FOAM (Sect. 2.2), estimated 201 missing R(VOC) (Sect. 3.2) and published kinetic rate constants (see Table 1 for references). The 202 rate of production or destruction is calculated with the following equations (Eq. 1-7) below. Note, 203 these equations differ from Schroeder et al. (2020) in that (a) ANs and PNs chemistry are explicitly 204 included and (b) the reaction of O₃ with alkenes is excluded as this reaction contributed a minor 205 loss to O_3 (< 1%).

206
$$P_{O_{x}} = \sum_{i} (1 - \alpha_{eff}) k_{RO_{2,i} + NO} [RO_{2,i}] [NO] + k_{HO_{2} + NO} [HO_{2}] [NO]$$
 (1)

207
$$L_{O_x} = k_{NO_2+OH}[NO_2][OH] + k_{O_3+OH}[O_3][OH] + f \times j_{O_1}[O_3] +$$

208
$$k_{HO_2+O_3}[HO_2][O_3] + net(PNs)$$
 (2)

209
$$\operatorname{net}(PNs) = \beta k_{R(O)O_2+NO_2}[R(O)O_2][NO_2] - (1-\beta)k_{\text{decomposition}}[PNs]$$
 (3)

210
$$\beta = \frac{k_{RC(O)O_2 + NO_2}[NO_2]}{k_{RC(O)O_2 + NO_2}[NO_2] + k_{RC(O)O_2 + NO}[NO]}$$
(4)

$$211 \qquad \qquad P(HO_x) = 2f \times j_{O^1D}[O_3] + 2j_{H_2O_2}[H_2O_2] + 2j_{CH_2O \to H + HCO}[CH_2O] + 2j_{CHOCHO}[CHOCHO] + 2j_{CHOCHO}[CHOC$$

$$212 \qquad 2j_{CH_3OOH}[CH_3OOH] + 2j_{CH_3CHO}[CH_3CHO] + 2j_{CH_3C(O)CH_3}[CH_3C(O)CH_3] + 2j_{CH_3OOH}[CH_3OOH] + 2j_{CH_3CHO}[CH_3OOH] + 2j_{CH_3OOH}[COOOH] + 2j_{COOOH}[COOOH] + 2j_{CO$$

213
$$2j_{CH_3CH_2C(O)CH_3}[CH_3CH_2C(O)CH_2]$$
 (5)

214
$$L(HO_x) = k_{NO_2+OH}[NO_2][OH] + \sum_i \alpha_{eff} k_{RO_{2,i}+NO}[RO_{2,i}][NO] +$$

$$215 2k_{HO_2+HO_2}[HO_2][HO_2] + 2k_{RO_2+RO_2}[RO_2'][RO_2'] + 2k_{HO_2+RO_2}[HO_2][RO_2'] + net(PNs) (6)$$

217 Here, k is the rate constant for compound, i, with the associated compound listed, α_{eff} is the 218 effective branching ratio for R2a and R2b for the observations (Sect. 3.2), f is the fraction that O¹D 219 that reacts with water to form OH versus reacting with a third body molecule to form O³P, β is the 220 fraction the R(O)O₂ that reacts with NO₂ versus NO, and j is the measured photolysis frequency 221 (Table 2). Note, R(O)O₂ is not included in Eq. 7 as (a) it is assumed the initial production of 222 R(O)O2 is captured with the reaction of OH with VOC and (b) R(O)O2 accounts for a small 223 fraction of the total RO₂ (< 10%). Not including R(O)O₂ in Eq. 7 may lead to a small 224 underestimation of total RO₂. Finally, HO₂ calculated from F0AM is used in the equations to 225 determine the O_x and HO_x budget.

226

227

228

229

230

231

232

233

3. Observational constraints on NO_x organic oxidation chemistry

In the Sect. 3.1, the detailed observations from the DC-8 during KORUS-AQ provided measurements that allow us to test our understanding of NO_x oxidation into total NO_z (NO_z = higher NO_x oxides, including ΣPNs , ΣANs , HNO_3 and particulate nitrate, pNO_3), which is needed for the remainder of the analysis. Sect. 3.2 to 3.4 will focus on the organic NO_z chemistry. This is due to the chemistry and dynamics impacting the total inorganic nitrate chemistry that has been discussed recently (Travis et al., 2022; Jordan et al., 2020).

234

235

3.1 NO_x and its oxidation products

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

The average NO_x mixing ratios observed by the NASA DC-8 in the SMA below 2 km after 11:00 local time is shown in Figure 1. As NO_x is mainly emitted from anthropogenic activities, such as combustion emissions, in an urban environment, the largest NO_x mixing ratios are observed between Olympic Park and the missed approach, as this area included downtown SMA. As the DC-8 flies from the missed approach toward Taehwa Research Site, the NO_x mixing ratios decreases. The combination of reduced emissions, chemical reactions, and dilution and mixing reduces the NO_x mixing ratios away from the city. An understanding of these processes is important for urban $P(O_x)$. On the DC-8, there were multiple measurements of various speciated and total family contribution towards NO_z (Table 2). The comparison of the speciated and measured NO_z is investigated in Figure 2 for observations over SMA. When only speciated PNs (GT) and ANs (CIT + WAS) and gas-phase nitrate (HNO₃) are compared to the NO_z (NO_y (NCAR) – (NO (NCAR) + NO₂ (TD-LIF)), only 46% of the NO₂ can be explained. This is not completely unexpected, as multiple studies have indicated that the speciated ANs measurements are typically lower than the total ANs measurements (Perring et al., 2010; Fisher et al., 2016). Further, pNO₃ has been found to be important for total nitrate budget in the SMA (e.g., Travis et al., 2022). Chemiluminescence measurements of gas-phase NO_v have been found to efficiently measure pNO₃, depending on the sensitivity to pNO₃ enhancements or exclusions (Bourgeois et al., 2022); thus, it is expected that missing ANs and pNO3 are necessary to close the NOz budget. Adding the measured pNO3 to the speciated PNs (GT) and ANs (CIT + WAS) and gas-phase nitric acid, 81% of NOz can be explained. This barely overlaps the combined uncertainty of the measurements (~26%). Total PNs and ANs, measured by TD-LIF, are needed to close of the total NO_z budget.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

The breakdown of the NO_z budget over the SMA as the airmasses photochemically ages (decreasing NO_x contribution to total NO_y) is shown in Figure 2b. During KORUS-AQ, ~56% of NO_z was inorganic (gas- and particle-phase nitrate), ranging from 52% to 62%; the remaining NO_z was organic (PNs and ANs). Approximately 74% of the total ANs were not speciated (range 73% to 76%). Speciated PNs species, such as PAN (peroxy acetyl nitrate), account for a mean 51% of the total PNs (range 47 to 59%), much lower than typically observed in prior studies (e.g., Wooldridge et al., 2010). In these prior studies, the speciated PN species (typically PAN + PPN (peroxy propionyl nitrate)) accounted for 90 - 100% of the ΣPNs , except for some select cases attributed to poor inlet design (Wooldridge et al., 2010). PAN accounted for the majority of the speciated PNs, with the remaining speciated PNs (PPN + PBzN (peroxy benzoyl nitrate) + APAN (peroxy acryloyl nitrate)) accounting for ~1%. However, during KORUS-AQ, Lee et al. (2022) observed that PAN contributed only 60% of calculated total PNs in industrial plumes near the SMA. Thus, the VOC emissions in and near SMA potentially lead to PNs typically not directly measured; this is explored more in Sect. 3.4 As NO_x decreases from ~30 ppby to 4 ppby, the contribution of organic NO_z increases (Figure 2b). At about 4 ppbv, the contribution of organic NO_z starts to decrease. Further, the contribution of the different organic NO_z species changes. For example, from ~30 ppbv to 4 ppbv, the un-speciated ΣPNs contributes the majority of the organic NO_z budget (~39%). Below ~4 ppby, the contribution of un-speciated ΣPNs decreases and the PAN contribution increases. The change in contribution of PNs is due to changes in the PN precursors (e.g., combination short-lived precursors oxidizing to CH₃C(O)O₂ and thermal decomposition of the higher PNs (higher PNs = ΣPNs - PAN)). On the other hand, the contribution of un-speciated ΣANs remains relatively constant with NO_x (~6% of total NO_z). However, the type of ANs is most likely changing with

 NO_x due to the lifetime of the ANs precursors and/or the lifetime of ANs. Less is known about the lifetime of ANs derived from anthropogenically emitted VOCs compared to those from biogenic VOCs (González-Sánchez et al., 2023; Picquet-Varrault et al., 2020; Zare et al., 2018). On average unknown ANs and PNs account for ~24% of the observed NO_z on average.

3.2 Meteorological impact on NO_x oxidation

As discussed in Sect. 2.1 and various prior studies, four different meteorological conditions impacted the observations during KORUS-AQ (Peterson et al., 2019). The impact of the meteorological conditions on NO_x oxidation was investigated by plotting two metrics of NO_x oxidation— O_x versus Σ ANs and Σ PNs versus formaldehyde (Figure 3). The implications of both plots are further discussed in Sect. 3.3 and 3.4, respectively. Briefly, O_x versus Σ ANs and Σ PNs versus formaldehyde are competitive products from the reaction of RO_2 or $R(O)O_2$ with NO_x (R2a versus R2b or R8 versus R9). The different meteorological periods corresponded to differences in temperatures and amount of photolysis due to cloud cover (Peterson et al., 2019). Thus, these different periods may impact gas-phase chemistry and/or VOC emissions. However, as demonstrated in Figure 3, there are minimal systematic differences in the trends observed for the two NO_x oxidation products as there is no systematic shift in the trends or scatter observed in Figure 3. This suggests that the data does not have to be separated by meteorological conditions.

3.3 Production of ANs to constrain R(VOC)

Observations of un-speciated ANs and PNs imply missing VOCs that impact O_3 chemistry. The relationship of ANs to O_x can provide a method to investigate this source. This relationship provides an estimate of the effective branching ratio, α , for the observed VOC mix (Perring et al.,

2013 and references therein). The value of this relationship stems from the reactions discussed 305 above (R1 – R6) in that upon the oxidation of VOCs, some fraction of the time, RO₂ reacts with 306 NO to form an AN molecule and the remainder of the time the reaction goes to form O₃. This is 307 expressed with the following equations:

$$P_{\Sigma ANS} = \sum \alpha_i k_{OH+VOCi} [OH] [VOC_i]$$
 (8)

$$P(O_{x}) = \sum_{i} \gamma_{i} (1 - \alpha_{i}) k_{OH+VOC_{i}} [OH][VOC_{i}]$$
(9)

310 Here, α is the effective branching ratio in the reaction of RO₂ with NO to form ANs versus RO 311 (R2), k is the OH rate constant with VOC i, and γ is the number of O₃ molecules formed per 312 oxidation of VOC, i. The γ, calculated for the observed and calculated compounds from F0AM using the values from MCM (Jenkin et al., 2015), is found to be, on average, 1.53, which is lower 313 314 than the value of 2 typically assumed in prior studies (e.g., Perring et al., 2013). This lower γ is 315 due to the role of CO and CH2O to the total reactivity. After the boundary layer height has 316 stabilized (e.g., after 11:00 am LT used here) and is near enough (e.g., less than 1 day aging) to 317 the VOC source to ignore deposition and entrainment, Eq. 8 and 9 can be combined to approximate 318 the change in O_x per molecule ΣAN formed:

319
$$\frac{\Delta O_X}{\Delta \Sigma A N_S} \approx \frac{P_{O_X}}{P \Sigma A N_S} \approx \frac{1.53(1-\alpha)}{\alpha}$$
 (10)

For this equation to be valid, α needs to be relatively small (α << 1), which is true for VOCs, as maximum α for the conditions of KORUS-AQ is expected to be 0.35 (Orlando and Tyndall, 2012; Perring et al., 2013; Yeh and Ziemann, 2014). Note, though Eq. 10 can be used at short photochemical ages due to minimal impact from physical loss processes, chemical loss processes may impact the assumptions in Eq. 10 and are discussed in more detail below.

Over the SMA during KORUS-AQ, the slope between O_x and Σ ANs was observed to be 40.5±1.8 (Figure 3a), with an $R^2 = 0.60$. Using Eq. 10, this translates to an effective branching

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

47 (Farmer et al., 2011; Kenagy et al., 2020; Perring et al., 2010; Rosen et al., 2004), leading to an effective α between 0.04 and 0.15, assuming a γ of 2 instead of the calculated γ used here. Thus, the α_{eff} observed over SMA during KORUS-AQ is similar to other urban locations (Houston = 0.05 (Rosen et al., 2004) and South Korea = 0.05 (Kenagy et al., 2021)) but much lower than observed for Mexico City = 0.07 - 0.12 (Perring et al., 2010; Farmer et al., 2011) and Denver = 0.16 (Kenagy et al., 2020). This suggests that VOCs with low α dominate the total R(VOC) and production of ANs in SMA. The VOCs in SMA that dominate R(VOCs), including OVOCs, alkenes, and aromatics (Schroeder et al., 2020; Simpson et al., 2020), generally have lower α (Perring et al., 2013 and references therein; Orlando and Tyndall, 2012). We use the observed VOCs (Table 2) to calculate α_{eff} from this mixture to compare to the calculated $\alpha_{\rm eff}$ of 0.036 derived from the slope of O_x versus ΣANs in Figure 3a, as shown in Figure 4. The R(VOC) calculated from the observed VOCs and from the intermediates produced by the F0AM model, described in Sect. 2.2, are shown in Figure 4a, and the reactivity weighted α for the observations is shown in Figure 4b. As has been observed in other urban environments (e.g., Hansen et al., 2021; Whalley et al., 2016; Whalley et al., 2021; Yang et al., 2022;), measured OVOCs contribute the most to the calculated R(VOC) for all NO_x mixing ratios (32 - 48%). The unmeasured OVOCs (F0AM species) contributed 17 – 28% of the calculated reactivity. The F0AM species reactivity ranged from $0.45 - 1.78 \text{ s}^{-1}$, which is a similar increase in total OH reactivity observed by Brune et al. (2022) over South Korea. At higher NO_x mixing ratios, primary, more reactive VOCs (e.g., alkanes, alkenes, aromatics) contribute an important fraction (> 25%) of the R(VOC). As there are interferences in the total OH reactivity measurement at high NO_x (Brune et al., 2022), we are unable to determine the extent to which the observed and modeled reactivity

ratio ($\alpha_{\rm eff}$), of 0.036. For other urban locations around the world, this slope has ranged from 13 –

350 captures total OH reactivity in the SMA above a NO_x value of approximately 4 ppbv. At lower 351 NO_x mixing ratios, ~33% of the R(VOC) is missing (calculated R(VOC), including F0AM species, ~3.0 s⁻¹ and measured R(VOC) from Penn State—see Table 2—is 4.5 s⁻¹). 352 353 Numerous other urban studies have observed unmeasured OH reactivity, which is assumed 354 to be unmeasured R(VOC), as the inorganic OH reactivity is typically well covered by measurements. This unmeasured R(VOC) has ranged from ~3 s⁻¹ to ~10 s⁻¹ (e.g., Brune et al., 355 356 2022; Hansen et al., 2021; Kim et al., 2016; Ma et al., 2022; Tan et al., 2019; Whalley et al., 2016; 357 Whalley et al., 2021). Over the SMA, the difference between measured and calculated R(VOC) was ~1.5 s⁻¹ at low NO_x and unknown at high NO_x mixing ratios. The lower difference may be 358 359 related to the comparison occurring for observations at low NO_x, when the very reactive material has either reacted into compounds measured on the DC-8 (e.g., formaldehyde, acetaldehyde, etc.), 360 361 diluted to low enough concentrations to be negligible for R(VOC), or undergone deposition or 362 partitioning to the particle-phase. 363 At higher NO_x mixing ratios, which is more representative of fresh emissions, these more reactive compounds typically not measured are expected to lead to a higher difference between the 364 365 calculated and observed R(VOC). Prior studies with more comprehensive measurements found 366 these more reactive compounds and their secondary products contributed an important fraction 367 towards the R(VOC) (e.g., Whalley et al., 2016). Thus, to determine if these unmeasured VOCs 368 potentially contribute to the R(VOC), and thus $P(O_x)$, in SMA, another means to constrain their 369 contributions is necessary. One potential means to constrain the total R(VOC) is by using the 370 observed Σ ANs and O_x and assuming the observations are from the instantaneous production of 371 both species (e.g., the assumption used for Figure 3a).

384

385

386

387

388

389

390

391

392

393

394

To estimate the unmeasured R(VOC), Eq. 10 is used without cancelling out terms and expanded into the measured and unmeasured R(VOC) and α :

$$\frac{\Delta O_x}{\Delta \sum ANs} = \frac{\gamma RVOC_m[\text{OH}] + \gamma RVOC_u[\text{OH}] - \gamma \alpha_m RVOC_m[\text{OH}] - \gamma \alpha_u RVOC_u[\text{OH}]}{\alpha_m RVOC_m[\text{OH}] + \alpha_u RVOC_u[\text{OH}]}$$
(11)

Here, $\frac{\Delta O_x}{\Delta \Sigma ANS}$ is the slope from Figure 3a, γ is the number of O₃ molecules formed per oxidation of 375 376 VOC, which is 1.53 for this study, R(VOC) is the VOC reactivity, which is its OH oxidation rate constant and its concentration ($k \times [VOC]$) in units s^{-1} , α is the branching ratio for R2 (Table 1), and 377 378 m and u correspond to measured and unmeasured RVOC and α . The rate constants for the measured 379 VOCs are listed in Table 1, the reactivity for F0AM is taken directly from F0AM, and α is either 380 from MCM (Jenkin et al., 2015) or Perring et al. (2013) for observations or assumed to be 0.05 for 381 F0AM secondary products. The equation is rearranged and solved for RVOCu, using different 382 values of α_u (e.g., 0.00 - 0.30, values typical α).

As discussed in Sect. S3 in the Supp. Information, there are numerous assumptions and potential sources of uncertainty in the simplified version of Eq. 11. A thorough analysis and discussion of these assumptions are discussed in Sect. S3. The potentially most important assumption is that chemical loss is negligible in solving Eq. 11. However, due to the expected relatively short lifetime of Σ ANs, the chemical loss of both O_x and ANs nearly cancel each other, leading to similar results in considering or neglecting these loss terms in Eq. 11. Further, as Σ ANs chemical loss has uncertainty, especially for ANs produced from anthropogenic VOC oxidation, the use of Eq. 11 reduces some of these uncertainties in comparison to Eq. S9. Thus, for the remainer of the paper, the values calculated from Eq. 11 will be used.

For the range of missing α assumed, an α = 0.10 for the unmeasured R(VOC) provides the best agreement with the observed R(VOC) ("From PSU" is the Penn State OH Reactivity with inorganic reactivity subtracted out) for all observations where NO_x < 4 ppbv. Further, it is found

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

that α ranging from 0.075 - 0.125 encompasses the associated uncertainty with the observed R(VOC) ($\pm 0.64 \text{ s}^{-1}$ (Brune et al., 2019)). This leads to an average unmeasured R(VOC) of $1.7^{+1.1}_{-0.4}$. The associated total missing R(VOC) for the assumed α of 0.10 ranges from 1.4 to 2.1 s⁻¹. Assuming typical rate constants for emitted VOCs, assuming it is comparable to semi- and intermediate-VOCs, and their associated secondary products ($\sim 1-4\times 10^{-11}$ cm³ molec. ⁻¹ s⁻¹ (Ma et al., 2017; Zhao et al., 2014)), the total missing reactivity would be equivalent to $\sim 1-8$ ppbv. Zhao et al. (2014) observed ~12 µg m⁻³ of semi- and intermediate-VOCs near Los Angeles, CA, during the CalNex study. Depending on the molecular weight assumed, this translates to ~1 to 2 ppby. Nault et al. (2018) found that ~5 – 8 ppbv of VOCs were needed to explain the observed secondary organic aerosol production over the SMA, depending on the molecular weight assumed for the VOC. Further, Kenagy et al. (2021) also found that known chemistry could only account for ~33% of the observed ANs and missing sources of lower volatility VOCs to produce anthropogenicallyderived ANs were necessary. Finally, Whalley et al. (2016) found that addition of unassigned VOCs and their associated oxidation products led to a reactivity of $\sim 1.6 \text{ s}^{-1}$, leading to $\sim 1-6 \text{ ppbv}$ missing R(VOC). Thus, the reactivity and equivalent mixing ratios estimated here appear plausible and warrant future measurements to understand this unmeasured reactivity sources. One important aspect of this unmeasured R(VOC) is that it should not be considered one or a couple of VOCs emitted and contributing 1-8 ppbv of VOC in the atmosphere. Instead, it will be the emitted VOCs and its oxidation products summed together to form the 1-8 ppbv of unmeasured VOCs in the atmosphere. One possible missing VOC is nonanal, which is associated with cooking emissions (Rao et al., 2010; Sai et al., 2012; Schauer et al., 2002) and vegetative emissions (Hurst Bowman et al., 2003). Kim et al. (2018) observed cooking organic aerosols at a ground site in SMA, indicating

© Û

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

that there should be associated gas-phase emissions from cooking. Nonanal has recently been suggested to be a potential interference compound with isoprene measurements on a PTR-MS (Coggon et al., 2024; Wargocki et al., 2023). Comparisons of isoprene measured by the PTR-MS and WAS during KORUS-AQ (Figure S5) shows at increasing NO_x mixing ratios (closer to emission sources), the difference between the PTR-MS and WAS isoprene mixing ratios increases. This suggests that there are potential unmeasured OVOCs and/or other C₅H₈ alkenes at high NO_x ratios that cannot be easily determined by the difference between the PTR-MS and WAS. Continuing to use nonanal as a surrogate for this unmeasured OVOC, nonanal has a rate constant consistent with the values used above for the missing R(VOC) (3.6×10⁻¹¹ cm³ molec.⁻¹ s⁻¹ (Hurst Bowman et al., 2003)). Further, nonanal has an estimated high α of \sim 0.2 (Hurst Bowman et al., 2003). As typical nonanal mixing ratios have been observed or estimated to be < 500 pptv, this suggests that nonanal or similar OVOCs may contribute to some of the missing reactivity (< 0.45 s⁻¹). Finally, nonanal may be an important higher PNs precursor (see Sect. 3.4 for more discussion about un-speciated higher PNs). OVOC emissions are generally considered to be an important fraction of R(VOC) for urban emissions (de Gouw et al., 2018; Gkatzelis et al., 2021; McDonald et al., 2018; Ma et al., 2022; Simpson et al., 2020; Wang et al., 2022; Yang et al., 2022). However, the α for OVOC is potentially smaller than alkanes, though it is highly unconstrained (Orlando and Tyndall, 2012). Note, higher OVOCs have been understudied and thus may have higher α (e.g., nonanal). Thus, if the missing reactivity is mainly OVOCs and it is assumed their α is low, compounds with $\alpha > 0.15$ will be needed for the budget closure shown here. Likely compounds with high α include alkanes, cycloalkenes/alkenes, and aromatics, though the latter is also highly uncertain. Alkanes have typically been a small source for the R(VOC) in urban environments (e.g., McDonald et al., 2018;

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Simpson et al., 2020; Whalley et al., 2016). Though aromatics contribute a significant fraction of R(VOC) in different Asian urban environments (Brune et al., 2022; Schroeder et al., 2020; Simpson et al., 2020; Whalley et al., 2021), the majority of the aromatic R(VOC) is considered to be measured by WAS over SMA during KORUS-AQ (e.g., measured aromatics account for ~81% of aromatic reactivity in McDonald et al. (2018) and 98% of aromatic reactivity in Whalley et al. (2016), where both studies had more complete VOC measurements). Finally, the cycloalkenes/alkenes originate from numerous anthropogenic sources (e.g., McDonald et al., 2018; Simpson et al., 2020). One subclass of cycloalkenes includes monoterpenes. Similar to the comparison of isoprene between PTR-MS and WAS, the difference in monoterpenes between these two measurements increases with increasing NO_x (Figure S6). As the interfering compound(s) measured by the PTR-MS and whether they are oxygenated or not is not known, only the WAS monoterpenes are used in this analysis of calculating R(VOC). Assuming the limonene rate constant, the difference between the PTR-MS and WAS monoterpenes raises the terpene reactivity by $0.05 - 0.30 \text{ s}^{-1}$. Though this does not include any associated photochemical products from the oxidation of monoterpenes and can improve the closure, it does not explain the total missing reactivity $(1.4 - 2.1 \text{ s}^{-1})$. Thus, the missing R(VOC) is most likely a combination of OVOCs and cycloalkenes/alkenes.

458

459

460

461

462

463

3.4 Sources of PNs over SMA

As shown in Figure 2, ΣPNs account for a larger fraction of the total NO_z budget than ΣANs . ΣPNs are known to be a temporary sink of NO_x and radicals $(R(O)O_2)$ due to their short thermal lifetime (~1 hr). Thus, the NO_x emitted in SMA is being transported regionally, impacting the $P(O_x)$.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

In Figure 3b, Σ PNs shows some correlation with formaldehyde. Both are secondary products from the photooxidation of VOCs and have short lifetimes, leading to the correlation. However, above 4 ppbv formaldehyde, the correlation shifts as Σ PNs increases more rapidly than formaldehyde. As shown in Figure S7, this change in the relationship between ΣPNs versus formaldehyde is due to changes in the competition in the reaction of the acyl peroxy radical (R(O)O₂) between NO₂ and NO. At low NO-to-NO₂ ratios, R8 is more favorable, leading to more efficient production of PNs over formaldehyde. As NO-to-NO2 ratios increase (NO becomes comparable to NO₂), R9 becomes more dominant, leading to less production of PNs. To further explore the sources of both PAN and the higher Σ PNs, the F0AM model (Wolfe et al., 2016) was used to predict ΣPNs , constrained by the observed VOCs precursors (Table 2). F0AM shows minimal bias in the predicted formaldehyde, NO₂, and OH (Figure S8). As discussed in Sect. 3.3, though, there is missing R(VOC) of 1. $7^{+1.1}_{-0.4}$ s⁻¹. A sensitivity analysis in adding this missing reactivity to F0AM on predicted OH and formaldehyde was conducted (Sect. S4 and Figure S9 – S10). Both OH and formaldehyde are found to be buffered with the addition of this low amount of R(VOC). Thus, though there is good agreement in these intermediate products between observation and F0AM, this analysis for the sources of PAN and higher ΣPNs is expected to be a lower limit. This missing R(VOC) is further observed in the F0AM-predicted higher PNs (\(\Sigma PAN\)\) versus formaldehyde, as a general underestimation in the total higher PNs compared to observations is observed (Figure 5a). PAN was excluded as F0AM overestimated the mixing ratios of PAN by approximately a factor of 2 (Figure S8e). Note, F0AM also overpredicted the PPN mixing ratios, but to a lesser extent than PAN (~50%; Figure S8f). The differences in predicted versus observed PNs may be associated with assumed background, dilution, and/or

temperature used to reach steady-state (Schroeder et al., 2020). Thus, the results from FOAM will

provide qualitative insight into sources and chemistry that should be investigated to better understand PN chemistry in SMA.

The classes of compounds producing higher PNs in F0AM are shown in Figure 5b. The classes of compounds were selected from the parent VOC which was oxidized into the higher PN (Table S2). Individual PNs with high contributions and/or are typically measured (PPN, PBzN, and MPAN (methacryloyl peroxy nitrate)) or are a large fraction of PNs but have yet to be measured in ambient conditions (PHAN) are shown without any connection to the parent VOC. Further, both PHAN and PPN have numerous precursors while many of the other higher PNs modeled by F0AM are generally associated with one precursor. At high NO_x mixing ratios, the more reactive VOCs (aromatics, terpenes) contribute a large fraction of the higher PNs (>35% for NO_x > 4 ppbv). As the air moves away from SMA (lower NO_x mixing ratios), contributions of higher PNs from longer-lived compounds (e.g., alkanes) and later generation oxidation products start dominating.

An interesting trend is observed for PPN and PHAN. Both peroxy acyl radicals for PPN and PHAN (C₂H₅C(O)O₂ and CH₂(OH)C(O)O₂, respectively) are products from photooxidation of many VOCs, including aromatics, alkanes, and methyl ethyl ketone (MEK). However, the fractional contribution of PPN to higher PNs remains constant with decreasing NO_x while the fractional contribution of PHAN increases with decreasing NO_x (Figure 5b). This stems from the sources of C₂H₅C(O)O₂ versus CH₂(OH)C(O)O₂. The MCM mechanism, which is used for F0AM, produces C₂H₅C(O)O₂ from the photooxidation from both short- and long-lived species (isoprene, C8-aromatics, toluene, ethanol, MEK, propane, and C4-alkanes) while CH₂(OH)C(O)O₂ is produced from the photooxidation of isoprene and ethene. For CH₂(OH)C(O)O₂, the production is through minor channels in the photooxidation of isoprene

Ethene is relatively long-lived, with a lifetime \sim 7 hrs (OH = 5×10^6 molec, cm⁻³) leading to the 511 512 delay in the production of PHAN. 513 The results here in general indicate more speciated measurements of higher PNs are 514 needed. However, as highlighted in Figure 5, improved detection of or measurements of PBzN, 515 PHAN, and MPAN would allow for furthering our knowledge in PNs chemistry in urban 516 environments and their role in controlling O_x production. 517 A qualitative investigation of the precursors of PAN predicted by F0AM are shown in 518 Figure 5c. This provides a basis for further investigation of the sources over the SMA region for 519 PAN as (a) F0AM over-predicts PAN, as noted above, (b) ethanol is currently estimated, similar 520 to Schroeder et al. (2020), and (c) R(VOC) in F0AM is low due to missing precursors. Like the 521 higher PNs, highly reactive R(VOC) contributes a large portion of the PAN budget at high NO_x. 522 The short-lived compounds contribute ~80% of PAN over SMA at the highest NO_x mixing ratios. At lower NO_x mixing ratios, moving away from SMA, longer-lived compounds, such as ethanol, 523 contribute the most towards PAN production (~70%). 524 525 One of the interesting contributions not typically observed for PAN is MEK, which also 526 contributes to PPN and PHAN. In prior studies, MEK mixing ratios were typically 0.5 to 2.0 ppbv 527 (Bon et al., 2011; de Gouw et al., 2018; Liu et al., 2015). Over the SMA, 1.5 ppbv of MEK was 528 observed on average with values as high as 8.3 ppbv. Due to the long lifetime of MEK (~30 hrs for the average photolysis rate measured and OH = 5×10^6 molec, cm⁻³), the high mixing ratios of 529 530 MEK are most likely due to direct emissions (e.g., de Gouw et al., 2005; Liu et al., 2015). Thus, 531 there are potentially large sources of MEK in SMA that need to be considered in properly 532 representing PAN chemistry.

(~3% yield directly from isoprene and ~20% as a secondary product (Galloway et al., 2011)).

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Another potentially important compound for PAN production is ethanol. However, this compound was not measured during KORUS-AQ; instead, it was estimated based on previous ground-based observations, similar to Schroeder et al. (2020). Ethanol is considered to mainly come from vehicle emissions (e.g., Millet et al., 2012) and potentially cleaning agents (e.g., McDonald et al., 2018). As ethanol use is predicted to increase in the future (e.g., de Gouw et al., 2012) and cleaning agents and other volatile chemical products appear to scale with population (Gkatzelis et al., 2021), ethanol and MEK may continue contributing towards the PAN budget in the SMA in the future. As a note, two other compounds potentially important for PAN production that were not measured on the DC-8 during KORUS-AQ include methylglyoxal and biacetyl (LaFranchi et al., 2009). In a forested environment that was partially impacted by urban outflow, these two components contributed on average 25% of the PAN budget (LaFranchi et al., 2009). In urban environments, methylglyoxal is believed to mainly originate from aromatic oxidation (Ling et al., 2020); whereas, biacetyl is believed to come from anthropogenic emissions (Xu et al., 2023). Further, as discussed in Sect. 4.3, these two compounds may potentially be important missing HO_x sources, as well. Thus, measurements of these two compounds along with ethanol is necessary to better understand PAN chemistry.

550

551

552

553

554

555

4. Observational constraints of the HO_x and O_x budget over SMA

As highlighted in Figure S1, the three factors impacting instantaneous $P(O_x)$ are R(VOC), $P(HO_x)$, and NO_x loss processes. In Sect. 3, the NO_x loss processes were investigated and provided a constraint for R(VOC) to improve the investigation of $P(O_x)$. With R(VOC) constrained, the RO_2 concentration can be estimated, providing a means to calculate the net $P(O_x)$ and to

investigate the major reactions leading to O_x loss and total HO_x ($OH + HO_2 + RO_2^- + R(O)O_2^-$) loss. With the latter, this allows for an investigation of the major $P(HO_x)$ reactions, assuming $L(HO_x)$ equals $P(HO_x)$ (see Eq. 1 – 7 in Sect. 2.3).

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

556

557

558

4.1 Net O_x production and sources of O_x loss

Using the total R(VOC) from Sect. 3.3 (Figure 4a), the net $P(O_x)$ (Eq. 1 – 2) over SMA during KORUS-AQ has been determined (Figure 6a). The net P(O_x) peaked at 10.3 ppbv hr⁻¹ at ~8 ppbv NO_x. If only the measured and estimated R(VOC) from F0AM secondary products is used to calculate net P(O_x), the value decreases to 8.8 ppbv hr⁻¹, but at the same NO_x mixing ratio. This value is similar to values observed in other urban locations around the world ($\sim 2-20 \text{ ppbv hr}^{-1}$), showing that many urban areas are still impacted by high P(O_x) values (Brune et al., 2022; Griffith et al., 2016; Ma et al., 2022; Ren et al., 2013; Schroeder et al., 2020; Whalley et al., 2016, 2018). The NO_x distribution over SMA (Figure 1) shows a large area (~127.53°E to 127.18°E, or ~39 km) is near the NO_x mixing ratio with the maximum P(O_x) (Figure 6). Thus, a large portion of the SMA will have high instantaneous $P(O_x)$ of ~10 ppbv hr⁻¹. As the median wind speed over SMA during KORUS-AQ was ~ 5 m s⁻¹, an air parcel would remain at the highest P(O_x) for ~ 2 hrs, leading to ~20 ppbv O₃ being produced (not including dilution). This agrees with the ~20 ppbv increase in O₃ observed over the Taehwa Research Forest supersite between midday and afternoon overpasses by the DC-8 during KORUS-AQ (Crawford et al., 2021). Thus, though there is a substantial O₃ background observed over SMA (Colombi et al., 2023; Crawford et al., 2021), a large contribution of the O₃ is due to photochemical production. The major reactions leading to O_x loss (L(O_x)) are shown in Figure 6b. The two major reactions that lead to O_x loss are net R8 (light and dark red), or the net production of PNs (which

includes losses), and R11, reaction of NO₂ with OH (blue) (see Table 1). Note, as discussed in Sect. 2.2, for the budget analysis conducted here, PAN and PPN were constrained to observations. At high NO_x (near emissions, ~30 ppbv), R11 (NO₂ + OH) dominates the L(O_x) budget (> 60%), with net R8 (net PAN, dark red, and higher PNs, light red) contributing ~25%, and R12 – 14 accounting for the remaining 15% of O_x loss. As NO_x mixing ratios decrease (moving away from emissions), the net R8 reaction, producing both PAN and higher PNs, starts contributing to larger total L(O_x), ranging from 30 – 40%. Furthermore, the net R8 reaction contribution towards L(O_x) remains relatively constants with NO_x mixing ratios as the contribution from R11 (OH + NO₂) decreases. At NO_x mixing ratios < 3 ppbv is when non-NO_x reactions (R12 – 14) contribute greater than 30% of the L(O_x) budget. Thus, proper representation of PAN and higher PNs, both in precursors and speciation, is important in properly understanding the O_x budget in SMA.

4.2 HO_x loss over the SMA

Similar to $L(O_x)$, the major reactions leading to $L(HO_x)$ over the SMA during KORUS-AQ were the reactions of NO_x with HO_x , specifically NO_2 with OH (R11) and net PAN (dark red) and higher PNs (light red) production (R8). Reaction R11 is most important for NO_x mixing ratios greater than 15 ppbv (50 – 65%). Between 5 and 15 ppbv, R11 is comparable to the net PN production (R8), where R11 comprises 35 – 50% of $L(HO_x)$ while net R8 (sum of higher Σ PNs and PAN) comprises 30 – 40% of $L(HO_x)$. At lower NO_x mixing ratios, R11 is always smaller for $L(HO_x)$ than net R8, where R11 is about a factor of 2 lower than net R8. Production of Σ ANs played a minor role due to the low α_{eff} .

The self-reaction of HO_x species (R15 – R16) contributes minimally to $L(HO_x)$ (less than 10%) for NO_x mixing ratios greater than 8 ppbv. At lower NO_x mixing ratios, R16 starts

dominating $L(HO_x)$ budget, increasing from 8% at 8 ppbv to 50% of $L(HO_x)$ at NO_x mixing ratios less than 2 ppbv. Reaction R15 remains relatively small for the $L(HO_x)$ budget, only reaching 7% of the $L(HO_x)$ budget at NO_x mixing ratios less than 2 ppbv.

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

602

603

604

4.3 Sources of HO_x over SMA

The analysis conducted leads to the ability to constrain HO_x losses over the SMA during KORUS-AQ. This is important as not all typical HO_x sources were measured on the DC-8 during the project (e.g., nitrous acid, or HONO), and HO_x production rates directly impacts P(O_x) (Figure S1). Prior studies (e.g., Griffith et al., 2016; Tan et al., 2019; Whalley et al., 2018) have demonstrated that in urban environments, sources of HO_x include photolysis of O₃ and subsequent reaction with water vapor, formaldehyde photolysis, and HONO photolysis. Furthermore, recent studies have highlighted the potential importance of typically non-measured OVOCs in their contribution to P(HO_x) and subsequent P(O_x) in an urban environment (Wang et al., 2022). To constrain the P(HO_x) over SMA during KORUS-AQ, the P(HO_x) was assumed to be equal to the observationally constrained L(HO_x). Then, P(HO_x) was calculated for the measurements on the DC-8, including photolysis of O₃, formaldehyde, H₂O₂, and other measured OVOCs (Table 2). Comparing the calculated $P(HO_x)$ and $L(HO_x)$, ~1.5 ppbv hr⁻¹ $P(HO_x)$ (range 1.3 – 1.8 ppbv hr⁻¹) is not accounted for, leading to ~45% of the necessary L(HO_x) to maintain steady-state (Figure 7). For the calculated P(HO_x) budget, O₃ and formaldehyde photolysis contributed ~50% and 40% of the budget, respectively, with the remainder coming from photolysis of H₂O₂ and other measured OVOCs. Accounting for the unobserved P(HO_x), O₃ and formaldehyde photolysis contributed ~25% and ~20%, respectively.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

Potential missing sources of P(HO_x) are briefly speculated here. First, one potential source is the photolysis of methylglyoxal. Using the F0AM predicted methylglyoxal, as it was not measured on the DC-8, methylglyoxal would contribute ~0.24 ppbv hr⁻¹ P(HO_x), or ~16% of the unobserved P(HO_x). Another OVOC not measured on the DC-8 and expected to originate from anthropogenic emissions and not from chemistry is 2,3-butanedione, or biacetyl (de Gouw et al., 2018; Grosjean et al., 2002; Schauer et al., 2002; Xu et al., 2023; Zhou et al., 2020). Prior studies observed 20 – 400 pptv of biacetyl (de Gouw et al., 2018; Xu et al., 2023), correspond to 0.04 – $0.74 \text{ ppbv hr}^{-1}$, or 3-49% of the unobserved P(HO_x). Thus, between these two OVOCs, 19-66%of the unobserved P(HO_x) could be explained. Other unmeasured OVOCs could potentially contribute to the observed P(HO_x) (e.g., Wang et al., 2022); however, there is less constraints both on the speciation and photolysis rates for these OVOCs (e.g., Mellouki et al., 2015). Finally, HONO could contribute to this observed P(HO_x). Up to 700 pptv of HONO was observed in SMA during KORUS-AO (Gil et al., 2021), though, this would quickly photolyze to the altitudes the DC-8 flew over SMA (Tuite et al., 2021). Even at 50 – 100 pptv HONO, photolysis of HONO would lead to 0.2 - 0.4 ppbv hr⁻¹ P(HO_x), or 13 - 27% of the unobserved P(HO_x). Thus, between methylglyoxal, biacetyl, and HONO, between 32 – 92% of the unobserved P(HO_x) could be accounted for. This analysis highlights the importance of measuring these HO_x sources to better understand and constrain O_x chemistry in SMA and other urban environments. One note about this analysis is that particulate matter collected onto the downwelling CAFS optics during KORUS-AQ (see Sect. S5, Table S3, and Figure S11). Corrections of up to 20%

were determined, and the associated uncertainties were also increased by 20% due to the

corrections. Thus, the exact amount of unmeasured P(HO_x) is potentially smaller than discussed.

646

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

afternoon during KORUS-AQ.

5. Conclusions and Implications

In the Seoul Metropolitan Area (SMA), the ozone (O₃) mixing ratio often exceeds current standards and is increasing. Many processes can impact the O₃ mixing ratios and exceedances. Here, the processes that impact instantaneous O_3 production $(P(O_x)$, where O_x is $O_3 + NO_2$ to account for possible O₃ titration) were investigated for observations collected on the NASA DC-8 during the 2016 NIER/NASA Korea United-States Air Quality (KORUS-AQ) study. The observations indicate missing oxidized NO_x products (NO_z) that include both the short-lived peroxy nitrates (ΣPNs) and alkyl and multi-functional nitrates (ΣANs). ΣPNs contributed the most for the organic NO_z species. Only ~50% of the ΣPNs were speciated over SMA, which is atypical as prior studies typically show closure between the speciated and total PN measurements. The un-speciated ΣPNs and ΣANs were used to constrain the missing volatile organic compound (VOC) reactivity (R(VOC)), as R(VOC) is important in constraining the instantaneous P(O₃). The missing R(VOC) was found to be 1.4 to 2.1 s⁻¹. The F0AM box model further supports the role of unmeasured ΣPNs as an important temporary NO_x and radical sink over SMA. F0AM predicts ~50% of the higher ΣPNs (higher $\Sigma PNs = \Sigma PNs - PAN$), indicating missing R(VOCs) may explain the other 50%. Constraints from both the ΣPNs and ΣANs suggest that this missing R(VOC) would include oxygenated VOCs (OVOCs), including aldehydes such as octanal and nonanal from cooking, and alkenes from anthropogenic emissions. With the constraints on the R(VOC), the net instantaneous $P(O_x)$ was determined for SMA. It was found to peak at ~10 ppbv hr⁻¹ at ~8 ppbv NO_x. A large fraction of the SMA area was, on average, at this mixing ratio of NO_x, indicating high local P(O_x). This supports the increase of ~20 ppbv of O₃ observed in a downwind site (Taehwa Research Forest supersite) from midday to

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

With the comprehensive measurements on-board the DC-8, the F0AM model results, and the observationally constrained R(VOC), a budget analysis on the sinks of O_3 (L(O_x)) and HO_x $(L(HO_x), \text{ where } HO_x = OH + HO_2 + RO_2 + R(O)O_2)$ was performed. Due to the high R(VOC), type of VOC, and the NO₂-to-NO ratio, net ΣPNs production is surprisingly a large and important sink of O_x and HO_x over SMA (~25 – 40% and 15 – 40% for $L(O_x)$ and $L(HO_x)$, respectively), with production of HNO₃ and radical self-reactions accounting for the other L(O_x) and L(HO_x) losses. Net ΣPNs production as an important $L(O_x)$ and $L(HO_x)$ term is significant, as ΣPNs is a temporary reservoir of both NO2 and R(O)O2 but has not traditionally been included in these calculations. Downwind locations separated from the local NO_x and VOC emissions of the SMA will experience increased P(O_x) due to the release of NO₂ and R(O)O₂. With the constraint of L(HO_x), P(HO_x) was investigated, assuming steady-state, and unmeasured HONO plus unmeasured OVOCs were found to be necessary to explain the missing HO_x sources. Both sources of HO_x are either missing or highly uncertain in chemical transport models. Though the high regional background and foreign sources of O₃ and its precursors elevate the O₃ levels in SMA and potentially already causes the SMA to be in exceedance for O₃ concentrations, this study highlights the importance local, in-situ P(O_x) to the SMA area, which can further exacerbate the O₃ concentrations for SMA and the surrounding region. The results support the observations of increasing O₃ with decreasing NO_x that has been observed for SMA in prior studies. Further, the study highlights the important role of unmeasured VOCs and OVOCs and the necessity to understand their sources and role in NO_x and O₃ chemistry. Further, the study demonstrates the interplay of direct emissions or secondary production of PN precursors and its role in net P(O_x). Attempts at specifically reducing the sources of PN may adversely impact net $P(O_x)$, as lower net PN chemistry may increase O_3 due to more NO_2 being available.

693 **Competing Interests** 694 At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and 695 Physics. 696 697 Acknowledgements 698 The authors acknowledge Michelle Kim, Alex Teng, John Crounse, and Paul O. Wennberg for 699 their measurements with CIT-CIMS (HNO₃, multifunctional alkyl nitrates, and OVOCs), William 700 H. Brune for his measurements with ATHOS (OH, OH reactivity), Alan Fried for his 701 measurements with CAMS (CH₂O and C₂H₆), Paul Romer-Present for his contribution to 702 collecting data with TD-LIF, Sally Pusede for her contributions to collecting data with DACOM 703 and DLH, and Andrew J. Weinheimer for his measurements of NO, O₃, and NO_y. The PTR-MS 704 instrument team (P. Eichler, L. Kaser, T. Mikoviny, M. Müller) are acknowledged for their 705 support. 706 707 **Funding** 708 BAN and KRT acknowledge NASA grant 80NSSC22K0283. LGH and YL acknowledge NASA 709 grant NNX15AT90G for the PAN measurements. SRH and KU were supported by NASA grant 710 NNX15AT99G for photolysis measurements. AW acknowledges support by the Austrian Federal 711 Ministry for Transport, Innovation, and Technology (bmvit-FFG-ASA) for the PTR-MAS 712 measurements. PCJ and JLJ were supported by NASA 80NSSC21K1451 and 80NSSC23K0828. 713 714 **Data Availability**

715 Version merged this R6 1-min data used in analysis available at 716 DOI:10.5067/Suborbital/KORUSAQ/DATA01. The F0AM setup file, input file, and output files 717 are all available at https://doi.org/10.5281/zenodo.10723227. 718 719 **Author Contribution** 720 BAN, KRT, and JHC designed the experiment and wrote the paper. BAN and KRT analyzed the 721 data. KRT ran the F0AM model and KRT and BAN analyzed the model output. BAN, DRB, PCJ, 722 RCC, JPD, GSD, SRH, LGH, JLJ, K-EK, YL, IJS, KU, and AW collected and QA/QC the data 723 during KORUS-AQ. All authors contributed to the writing and editing of the paper.

724 References

- 725 Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R., Young, P. J., Akiyoshi, H., Cox, R.
- 726 A., Coyle, M., Derwent, R. G., Deushi, M., Finco, A., Frost, G. J., Galbally, I. E., Gerosa, G.,
- 727 Granier, C., Griffiths, P. T., Hossaini, R., Hu, L., Jöckel, P., Josse, B., Lin, M. Y., Mertens, M.,
- Morgenstern, O., Naja, M., Naik, V., Oltmans, S., Plummer, D. A., Revell, L. E., Saiz-Lopez, A.,
- 729 Saxena, P., Shin, Y. M., Shahid, I., Shallcross, D., Tilmes, S., Trickl, T., Wallington, T. J., Wang,
- 730 T., Worden, H. M., and Zeng, G.: Tropospheric ozone assessment report: A critical review of
- 731 changes in the tropospheric ozone burden and budget from 1850 to 2100,
- 732 https://doi.org/10.1525/elementa.2020.034, 2020.
- 733 Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes,
- 734 Atmos Chem Phys, 3, 2233–2307, https://doi.org/10.5194/acp-3-2233-2003, 2003.
- Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem Rev,
- 736 103, 4605–4638, https://doi.org/10.1021/CR0206420, 2003.
- 737 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M.
- 738 E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry:
- 739 Volume II gas phase reactions of organic species, Atmos Chem Phys, 6, 3625-4055,
- 740 https://doi.org/10.5194/acp-6-3625-2006, 2006.
- 741 Bohn, B. and Zetzsch, C.: Kinetics and mechanism of the reaction of OH with the
- 742 trimethylbenzenes experimental evidence for the formation of adduct isomers, Physical
- 743 Chemistry Chemical Physics, 14, 13933, https://doi.org/10.1039/c2cp42434g, 2012.
- Bon, D. M., Ulbrich, I. M., De Gouw, J. a., Warneke, C., Kuster, W. C., Alexander, M. L., Baker,
- 745 a., Beyersdorf, a. J., Blake, D., Fall, R., Jimenez, J. L., Herndon, S. C., Huey, L. G., Knighton, W.
- B., Ortega, J., Springston, S., and Vargas, O.: Measurements of volatile organic compounds at a
- 747 suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement
- 748 comparison, emission ratios, and source attribution, Atmos Chem Phys, 11, 2399–2421,
- 749 https://doi.org/10.5194/acp-11-2399-2011, 2011.
- 750 Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Allen, H. M., Campuzano-jost, P., Coggon,
- 751 M. M., Digangi, J. P., Diskin, G. S., Gilman, J. B., Gkatzelis, G. I., Guo, H., Halliday, H. A.,
- Hanisco, T. F., Holmes, C. D., Nault, B. A., Nowak, J. B., Pagonis, D., Rickly, P. S., Robinson,
- 753 M. A., Veres, P. R., Warneke, C., Wennberg, P. O., Washenfelder, R. A., and Wiggins, E. B.:
- 754 Comparison of airborne measurements of NO, NO₂, HONO, NO_y, and CO during FIREX-AQ,
- 755 Atmos Meas Tech, 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, 2022.
- 756 Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., and Bui, T.
- 757 P.: Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric
- Tomography (ATom), Journal of Geophysical Research: Atmospheres, 125, c2019JD031685,
- 759 https://doi.org/10.1029/2019JD031685, 2019.
- Brune, W. H., Miller, D. O., Thames, A. B., Brosius, A. L., Barletta, B., Blake, D. R., Blake, N.
- 761 J., Chen, G., Choi, Y., Crawford, J. H., Digangi, J. P., Diskin, G., Fried, A., Hall, S. R., Hanisco,
- T. F., Huey, G. L., Hughes, S. C., Kim, M., Meinardi, S., Montzka, D. D., Pusede, S. E., Schroeder,
- 763 J. R., Teng, A., Tanner, D. J., Ullmann, K., Walega, J., Weinheimer, A., Wisthaler, A., and
- Wennberg, P. O.: Observations of atmospheric oxidation and ozone production in South Korea,
- 765 Atmos Environ, 269, 118854, https://doi.org/10.1016/j.atmosenv.2021.118854, 2022.

- Herbidger, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Cappa, C. D., Crounse, J. D., Dibble,
- 767 T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., and
- 768 Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
- 769 Evaluation No. 19, Pasadena, CA, USA, 2020.
- 770 Coggon, M. M., Stockwell, C. E., Claflin, M. S., Pfannerstill, E. Y., Lu, X., Gilman, J. B.,
- Marcantonio, J., Cao, C., Bates, K., Gkatzelis, G. I., Lamplugh, A., Katz, E. F., Arata, C., Apel, E.
- 772 C., Hornbrook, R. S., Piel, F., Majluf, F., Blake, D. R., Wisthaler, A., Canagaratna, M., Lerner, B.
- 773 M., Goldstein, A. H., Mak, J. E., and Warneke, C.: Identifying and correcting interferences to
- 774 PTR-ToF- MS measurements of isoprene and other urban volatile organic compounds, Atmos
- 775 Meas Tech, 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, 2024.
- 776 Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K.,
- 777 Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A.,
- Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick,
- G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar,
- 780 M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air
- 781 pollution: an analysis of data from the Global Burden of Diseases Study 2015, The Lancet, 389,
- 782 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
- 783 Colombi, N. K., Jacob, D. J., Yang, L. H., Zhai, S., Shah, V., Grange, S. K., Yantosca, R. M., Kim,
- 784 S., and Liao, H.: Why is ozone in South Korea and the Seoul metropolitan area so high and
- 785 increasing?, Atmos Chem Phys, 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, 2023.
- Crawford, J. H., Ahn, J. Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim, J., Lee, G., Park, J. H.,
- 787 Park, R. J., Woo, J. H., Song, C. K., Hong, J. H., Hong, Y. D., Lefer, B. L., Lee, M., Lee, T., Kim,
- 788 S., Min, K. E., Yum, S. S., Shin, H. J., Kim, Y. W., Choi, J. S., Park, J. S., Szykman, J. J., Long,
- 789 R. W., Jordan, C. E., Simpson, I. J., Fried, A., Dibb, J. E., Cho, S. Y., and Kim, Y. P.: The Korea-
- 790 United States air quality (KORUS-AQ) field study, Elementa, 9, 1–27,
- 791 https://doi.org/10.1525/elementa.2020.00163, 2021.
- 792 Crounse, J., McKinney, K. A., Kwan, A. J., and Wennberg, P. O.: Measurement of gas-phase
- 793 hydroperoxides by chemical ionization mass spectrometry, Anal Chem, 78, 6726–6732,
- 794 https://doi.org/doi:10.1021/ac0604235, 2006.
- 795 Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal
- 796 dissociation laser-induced fluorescence instrument for in situ detection of NO₂, peroxy nitrates,
- 797 alkyl nitrates, and HNO₃, Journal of Geophysical Research-Atmospheres, 107, 4046,
- 798 https://doi.org/10.1029/2001JD000779, 2002.
- Day, D. A., Campuzano-Jost, P., Nault, B. A., Palm, B. B., Hu, W., Guo, H., Wooldridge, P. J.,
- 800 Cohen, R. C., Docherty, K. S., Huffman, J. A., De Sá, S. S., Martin, S. T., and Jimenez, J. L.: A
- 801 systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using
- 802 real-Time aerosol mass spectrometry, Atmos Meas Tech, 15, 459–483,
- 803 https://doi.org/10.5194/amt-15-459-2022, 2022.
- 804 Diskin, G. S., Podolske, J. R., Sachse, G. W., and Slate, T. A.: Open-path airborne tunable diode
- 805 laser hygrometer, in: Diode Lasers and Applications in Atmospheric Sensing, edited by: Fried, A.,
- Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 4817, 196–204,
- 807 https://doi.org/doi:10.1117/12.453736, 2002.

- 808 Espada, C. and Shepson, P. B.: The production of organic nitrates from atmospheric oxidation of
- 809 ethers and glycol ethers, Int J Chem Kinet, 37, 686–699, https://doi.org/10.1002/kin.20121, 2005.
- 810 Faloona, I. C., Tan, D., Lesher, R. L., Hazen, N. L., Frame, C. L., Simpas, J. B., Harder, H.,
- 811 Martinez, M., Di Carlo, P., Ren, X., and Brune, W. H.: A Laser-induced Fluorescence Instrument
- 812 for Detecting Tropospheric OH and HO₂: Characteristics and Calibration, J Atmos Chem, 47,
- 813 139–167, https://doi.org/10.1023/B:JOCH.0000021036.53185.0e, 2004.
- Farmer, D. K., Perring, A. E., Wooldridge, P. J., Blake, D. R., Baker, A., Meinardi, S., Huey, L.
- 815 G., Tanner, D., Vargas, O., and Cohen, R. C.: Impact of organic nitrates on urban ozone
- 816 production, Atmos Chem Phys, 11, 4085–4094, https://doi.org/10.5194/acp-11-4085-2011, 2011.
- 817 Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Miller, C. C., Yu, K., Zhu, L.,
- Yantosca, R. M., Sulprizio, M. P., Mao, J., Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen,
- T. B., Clair, J. M. S., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L.,
- 820 Campuzano-Jost, P., Day, D. A., Hu, W., Shepson, P. B., Xiong, F., Blake, D. R., Goldstein, A.
- 821 H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson, T. B., Wisthaler, A., and Mikoviny, T.:
- 822 Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and
- 823 monoterpene-rich atmosphere: Constraints from aircraft (SEAC⁴RS) and ground-based (SOAS)
- observations in the Southeast US, Atmos Chem Phys, 16, https://doi.org/10.5194/acp-16-5969-
- 825 2016, 2016.
- 826 Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I. J., Blake, D. R., Blake, N. J., Meinardi,
- 827 S., Barletta, B., Hughes, S. C., Crawford, J. H., Diskin, G., Barrick, J., Hair, J., Fenn, M.,
- Wisthaler, A., Mikoviny, T., Woo, J., Park, M., Kim, J., Min, K., Jeong, S., Wennberg, P. O., Kim,
- 829 M. J., Crounse, J. D., Teng, A. P., Bennett, R., Yang-martin, M., Shook, M. A., Huey, G., Tanner,
- 830 D., Knote, C., and Kim, J.: Airborne formaldehyde and volatile organic compound measurements
- 831 over the Daesan petrochemical complex on Korea's northwest coast during the Korea-United
- 832 States Air Quality study: Estimation of emission fluxes and effects on air quality, Elementa:
- 833 Science of the Anthropocene, 8, 1, https://doi.org/10.1525/elementa.2020.121, 2020.
- 834 Galloway, M. M., Huisman, A. J., Yee, L. D., Chan, A. W. H., Loza, C. L., Seinfeld, J. H., and
- 835 Keutsch, F. N.: Yields of oxidized volatile organic compounds during the OH radical initiated
- 836 oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions, Atmos
- 837 Chem Phys, 11, https://doi.org/10.5194/acp-11-10779-2011, 2011.
- 838 Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C.,
- 839 Coheur, P. F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O.,
- 840 Granados-Muñoz, M. J., Hannigan, J. W., Hase, F., Hassler, B., Huang, G., Hurtmans, D., Jaffe,
- D., Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le Flochmoën, E.,
- Lin, W., Liu, J., Liu, X., Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M.,
- Petetin, H., Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab,
- 844 J., Siddans, R., Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V.,
- Thompson, A. M., Trickl, T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu,
- 846 X., Zeng, G., and Ziemke, J.: Tropospheric Ozone Assessment Report: Present-day distribution
- 847 and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model
- evaluation, Elementa, 6, https://doi.org/10.1525/elementa.291, 2018.
- 849 Gil, J., Kim, J., Lee, M., Lee, G., Ahn, J., Soo, D., Jung, J., Cho, S., Whitehill, A., Szykman, J.,
- and Lee, J.: Characteristics of HONO and its impact on O₃ formation in the Seoul Metropolitan

- 851 Area during the Korea-US Air Quality study, Atmos Environ, 247, 118182,
- 852 https://doi.org/10.1016/j.atmosenv.2020.118182, 2021.
- 853 Gkatzelis, G. I., Coggon, M. M., Mcdonald, B. C., Peischl, J., Aikin, K. C., Gilman, J. B., Trainer,
- 854 M., and Warneke, C.: Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities,
- 855 Environmental Science & Technology, 55, 188–199, https://doi.org/10.1021/acs.est.0c05467, 2021.
- 856 González-Sánchez, J. M., Brun, N., Wu, J., Ravier, S., and Clément, J.: On the importance of
- 857 multiphase photolysis of organic nitrates on their global atmospheric removal, Atmos Chem Phys,
- 858 23, 5851–5866, https://doi.org/10.5194/acp-23-5851-2023, 2023.
- de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M.,
- 860 Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C.,
- 861 Marchewka, M. L., Bertman, S. B., and Bates, T. S.: Budget of organic carbon in a polluted
- 862 atmosphere: Results from the New England Air Quality Study in 2002, Journal of Geophysical
- 863 Research: Atmospheres, 110, D16305, https://doi.org/10.1029/2004JD005623, 2005.
- de Gouw, J. A., Gilman, J. B., Borbon, A., Warneke, C., Kuster, W. C., Goldan, P. D., Holloway,
- J. S., Peischl, J., Ryerson, T. B., Parrish, D. D., Gentner, D. R., Goldstein, A. H., and Harley, R.
- 866 A.: Increasing atmospheric burden of ethanol in the United States, Geophys Res Lett, 39, L15803,
- 867 https://doi.org/10.1029/2012GL052109, 2012.
- de Gouw, J. A., Gilman, J. B., Kim, S.-W., Alvarez, S. L., Dusanter, S., Graus, M., Griffith, S. M.,
- 869 Isaacman-VanWertz, G., Kuster, W. C., Lefer, B. L., Lerner, B. M., McDonald, B. C.,
- 870 Rappenglück, B., Roberts, J. M., Stevens, P. S., Stutz, J., Thalman, R., Veres, P. R., Volkamer, R.,
- Warneke, C., Washenfelder, R. A., and Young, C. J.: Chemistry of Volatile Organic Compounds
- 872 in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission
- 873 Ratios, Journal of Geophysical Research: Atmospheres, 123, 2298–2319,
- 874 https://doi.org/10.1002/2017JD027976, 2018.
- 875 Griffith, S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B., Kuster, W. C., Veres, P.
- 876 R., Graus, M., de Gouw, J. A., Roberts, J., Young, C., Washenfelder, R., Brown, S. S., Thalman,
- 877 R., Waxman, E., Volkamer, R., Tsai, C., Stutz, J., Flynn, J. H., Grossberg, N., Lefer, B., Alvarez,
- 878 S. L., Rappenglueck, B., Mielke, L. H., Osthoff, H. D., and Stevens, P. S.: Measurements of
- 879 hydroxyl and hydroperoxy radicals during CalNex-LA: Model comparisons and radical budgets,
- 880 Journal of Geophysical Research: Atmospheres, 121, 4211–4232,
- 881 https://doi.org/10.1002/2015JD024358, 2016.
- 882 Grosjean, D., Grosjean, E., and Gertler, A. W.: On-Road Emissions of Carbonyls from Light-Duty
- 883 and Heavy-Duty Vehicles, Environmental Science & Technology, 35, 45-53,
- 884 https://doi.org/10.1021/es001326a, 2002.
- Hansen, R. F., Griffith, S. M., Dusanter, S., Gilman, J. B., Graus, M., Kuster, W. C., Veres, P. R.,
- de Gouw, J. A., Warneke, C., Washenfelder, R. A., Young, C. J., Brown, S. S., Alvarez, S. L.,
- 887 Flynn, J. H., Grossberg, N. E., Lefer, B., Rappenglueck, B., and Stevens, P. S.: Measurements of
- 888 Total OH Reactivity During CalNex-LA, Journal of Geophysical Research: Atmospheres, 126,
- 889 e2020JD032988, https://doi.org/10.1029/2020JD032988, 2021.
- 890 Hurst Bowman, J., Barket, D. J., and Shepson, P. B.: Atmospheric chemistry of nonanal,
- 891 Environmental Science & Technology, 37, 2218–2225, 2003.

- 892 Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene,
- 893 Atmos Chem Phys, 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
- 894 Jo, D. S., Emmons, L. K., Callaghan, P., Tilmes, S., and Woo, J.: Comparison of Urban Air Quality
- 895 Simulations During the KORUS-AQ Campaign With Regionally Refined Versus Global Uniform
- 896 Grids in the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0, J Adv
- 897 Model Earth Syst, 15, e2022MS003458, https://doi.org/10.1029/2022MS003458, 2023.
- Jordan, C. E., Crawford, J. H., Beyersdorf, A. J., Eck, T. F., Halliday, H. S., Nault, B. A., Chang,
- 899 L. S., Park, J. S., Park, R., Lee, G., Kim, H., Ahn, J. Y., Cho, S., Shin, H. J., Lee, J. H., Jung, J.,
- 900 Kim, D. S., Lee, M., Lee, T., Whitehill, A., Szykman, J., Schueneman, M. K., Campuzano-Jost,
- 901 P., Jimenez, J. L., DiGangi, J. P., Diskin, G. S., Anderson, B. E., Moore, R. H., Ziemba, L. D.,
- Fenn, M. A., Hair, J. W., Kuehn, R. E., Holz, R. E., Chen, G., Travis, K., Shook, M., Peterson, D.
- A., Lamb, K. D., and Schwarz, J. P.: Investigation of factors controlling PM2.5 variability across
- 904 the South Korean Peninsula during KORUS-AQ, Elementa, 8,
- 905 https://doi.org/10.1525/elementa.424, 2020.
- 906 Kenagy, H. S., Sparks, T. L., Ryerson, T. B., Blake, D. R., and Cohen, R. C.: Evidence of
- 907 Nighttime Production of Organic Nitrates During SEAC⁴RS, FRAPPE, and KORUS-AQ,
- 908 Geophys Res Lett, 47, e2020GL087860, https://doi.org/10.1029/2020GL087860, 2020.
- 909 Kenagy, H. S., Romer Present, P. S., Wooldridge, P. J., Nault, B. A., Campuzano-Jost, P., Day, D.
- 910 A., Jimenez, J. L., Zare, A., Pye, H. O. T., Yu, J., Song, C. H., Blake, D. R., Woo, J. H., Kim, Y.,
- and Cohen, R. C.: Contribution of Organic Nitrates to Organic Aerosol over South Korea during
- 912 KORUS-AQ, Environ Sci Technol, 55, 16326–16338, https://doi.org/10.1021/acs.est.1c05521,
- 913 2021.
- 914 Kim, D., Cho, C., Jeong, S., Lee, S., Nault, B. A., Campuzano-jost, P., Day, D. A., Schroder, J.
- 915 C., Jimenez, J. L., Volkamer, R., Pusede, S. E., Hall, S. R., Ullmann, K., Huey, L. G., Tanner, D.
- 916 J., and Dibb, J.: Field observational constraints on the controllers in glyoxal (CHOCHO) reactive
- 917 uptake to aerosol, Atmos Chem Phys, 22, 805–821, https://doi.org/10.5194/acp-22-805-2022,
- 918 2022a.
- 919 Kim, H., Zhang, Q., and Heo, J.: Influence of Intense secondary aerosol formation and long-range
- 920 transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time:
- 921 Results from KORUS-AQ, Atmos. Chem. Phys., 18, 7149–7168, https://doi.org/10.51944/acp-
- 922 2017-947, 2018.
- 923 Kim, H., Park, R. J., Kim, S., Brune, W. H., Diskin, G. S., Fried, A., Hall, S. R., Weinheimer, A.
- J., Wennberg, P., Wisthaler, A., Blake, D. R., and Ullmann, K.: Observed versus simulated OH
- 925 reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical
- 926 environment in East Asia, Elementa, 10, 1–26, 2022b.
- 927 Kim, J., Lee, J., Han, J., Choi, J., Kim, D.-G., Park, J., and Lee, G.: Long-term Assessment of
- 928 Ozone Nonattainment Changes in South Korea Compared to US, and EU Ozone Guidelines, Asian
- 929 Journal of Atmospheric Environment, 15, 20–32, https://doi.org/10.5572/ajae.2021.098, 2021.
- 930 Kim, S., Huey, L. G., Stickel, R. E., Tanner, D. J., Crawford, J. H., Olson, J. R., Chen, G., Brune,
- 931 W. H., Ren, X., Lesher, R., Wooldridge, P. J., Bertram, T. H., Perring, A., Cohen, R. C., Lefer, B.
- 932 L., Shetter, R. E., Avery, M., Diskin, G., and Sokolik, I.: Measurement of HO2NO2 in the free
- 933 troposphere during the Intercontinental Chemical Transport Experiment-North America 2004,

- 934 Journal of Geophysical Research: Atmospheres, 112, D12S01,
- 935 https://doi.org/10.1029/2006JD007676, 2007.
- Kim, S., Sanchez, D., Wang, M., Seco, R., Jeong, D., Hughes, S., Barletta, B., Blake, D. R., Jung,
- 937 J., Kim, D., Lee, G., Lee, M., Ahn, J., Lee, S.-D., Cho, G., Sung, M.-Y., Lee, Y.-H., Kim, D. B.,
- 938 Kim, Y., Woo, J.-H., Jo, D., Park, R., Park, J.-H., Hong, Y.-D., Hong, J.-H., Zhang, D. Y., Liu, J.
- 939 J., Li, B. J., Davis, D. L., Bell, M. L., Fletcher, T., Haagen-Smit, A. J., Blacet, F. E., Edinger, J.
- 940 G., Yum, S. S., Roberts, G., Kim, J. H., Song, K. Y., Kim, D. Y., Lim, Y. J., Armendariz, A., Son,
- 941 Y. S., Kim, J. C., Kim, S., Kim, S. Y., Lee, M., Shim, H., Wolfe, G. M., Guenther, A. B., He, A.,
- 942 Hong, Y., Han, J., Kim, S., Lee, M., Kim, S., Choi, S., Seok, S., Kim, S., Kim, S. Y., Jiang, X. Y.,
- 943 Lee, M., Turnipseed, A., Guenther, A., Kim, J. C., Lee, S. J., Kim, S., Lee, K. Y., Kwak, K. H.,
- 944 Ryu, Y. H., Lee, S. H., Baik, J. J., Ryu, Y. H., Baik, J. J., Kwak, K. H., Kim, S., Moon, N., Bao,
- 945 H., Shrestha, K. L., Kondo, A., Kaga, A., Inoue, Y., Ran, L., Zhao, C. S., Xu, W. Y., Lu, X. Q.,
- 946 Han, M., Lin, W. L., Yan, P., Xu, X. B., Deng, Z. Z., Ma, N., Liu, P. F., Yu, J., Liang, W. D.,
- 947 Chen, L. L., Geng, F., Tie, X., Guenther, A., Li, G., et al.: OH reactivity in urban and suburban
- 948 regions in Seoul, South Korea an East Asian megacity in a rapid transition, Faraday Discuss.,
- 949 189, 231–251, https://doi.org/10.1039/C5FD00230C, 2016.
- 950 KORUS-AQ Science Team: KORUS-AQ Data, [Dataset], NASA Langley Research Center.,
- 951 https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01, 2023.
- 952 LaFranchi, B. W., Wolfe, G. M., Thornton, J. a., Harrold, S. a., Browne, E. C., Min, K. E.,
- 953 Wooldridge, P. J., Gilman, J. B., Kuster, W. C., Goldan, P. D., DeGouw, J. a., McKay, M.,
- 954 Goldstein, a. H., Ren, X. R., Mao, J. Q., Cohen, R. C., de Gouw, J. a., Welsh-Bon, D., Chen, Z.,
- 955 and Brune, W. H.: Closing the peroxy acetyl (PA) radical budget: Observations of acyl peroxy
- 956 nitrates (PAN, PPN and MPAN) during BEARPEX 2009, Abstracts of Papers of the American
- 957 Chemical Society, 9, 289, https://doi.org/10.5194/acp-9-7623-2009, 2009.
- 958 Lee, Y. R., Huey, L. G., Tanner, D. J., Takeuchi, M., Qu, H., Liu, X., Ng, N. L., Crawford, J. H.,
- 959 Fried, A., Richter, D., Simpson, I. J., Blake, D. R., Blake, N. J., Meinardi, S., Kim, S., Diskin, G.
- 960 S., Digangi, J. P., Choi, Y., Pusede, S. E., Wennberg, P. O., Kim, M. J., Crounse, J. D., Teng, A.
- 961 P., Cohen, R. C., Romer, P. S., Brune, W., Wisthaler, A., Mikoviny, T., Jimenez, J. L.,
- 962 Campuzano-Jost, P., Nault, B. A., Weinheimer, A., Hall, S. R., and Ullmann, K.: An investigation
- of petrochemical emissions during KORUS-AQ: Ozone production, reactive nitrogen evolution,
- 964 and aerosol production, Elementa, 10, 1–24, https://doi.org/10.1525/elementa.2022.00079, 2022.
- Ling, Z., Xie, Q., Shao, M., Wang, Z., Wang, T., Guo, H., and Wang, X.: Formation and sink of
- 966 glyoxal and methylglyoxal in a polluted subtropical environment: Observation-based
- 967 photochemical analysis and impact evaluation, Atmos Chem Phys, 20, 11451-11467,
- 968 https://doi.org/10.5194/acp-20-11451-2020, 2020.
- 969 Liu, Y., Yuan, B., Li, X., Shao, M., Lu, S., Li, Y., Chang, C., Wang, Z., Hu, W., Huang, X., He,
- 970 L., Zeng, L., Hu, M., and Zhu, T.: Impact of pollution controls in Beijing on atmospheric
- 971 oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: observation
- and modeling implications, Atmos Chem Phys, 15, 3045–3062, https://doi.org/10.5194/acp-15-
- 973 3045-2015, 2015.
- 974 Lyu, X. P., Zeng, L. W., Guo, H., Simpson, I. J., Ling, Z. H., Wang, Y., Murray, F., Louie, P. K.
- 975 K., Saunders, S. M., Lam, S. H. M., and Blake, D. R.: Evaluation of the effectiveness of air

- 976 pollution control measures in Hong Kong, Environmental Pollution, 220, 87-94,
- 977 https://doi.org/10.1016/j.envpol.2016.09.025, 2017.
- 978 Ma, P. K., Zhao, Y., Robinson, A. L., Worton, D. R., Goldstein, A. H., Ortega, A. M., Jimenez, J.-
- 979 L., Zotter, P., Prévôt, A. S. H., Szidat, S., and Hayes, P. L.: Evaluating the impact of new
- 980 observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall
- 981 losses on SOA modeling for Los Angeles, CA, Atmos Chem Phys, 17, 9237-9259,
- 982 https://doi.org/10.5194/acp-17-9237-2017, 2017.
- 983 Ma, X., Tan, Z., Lu, K., Yang, X., Chen, X., Wang, H., Chen, S., Fang, X., Li, S., Li, X., Liu, J.,
- Liu, Y., Lou, S., Qiu, W., and Wang, H.: OH and HO 2 radical chemistry at a suburban site during
- 985 the EXPLORE-YRD campaign in 2018, Atmos Chem Phys, 22, 7005–7028,
- 986 https://doi.org/10.5194/acp-22-7005-2022, 2022.
- 987 Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, a., Huey, L. G., Cohen, R. C.,
- 988 Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R., and Shetter, R.
- 989 E.: Airborne measurement of OH reactivity during INTEX-B, Atmos Chem Phys, 9, 163–173,
- 990 https://doi.org/10.5194/acp-9-163-2009, 2009.
- 991 McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa, C. D., Jimenez,
- 992 J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A., Cui, Y. Y., Kim, S.-W., Gentner, D. R.,
- 993 Isaacman-VanWertz, G., Goldstein, A. H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T.
- 994 B., and Trainer, M.: Volatile chemical products emerging as largest petrochemical source of urban
- 995 organic emissions, Science, 359, 760–764, https://doi.org/10.1126/science.aaq0524, 2018.
- 996 Mellouki, A., Wallington, T. J., and Chen, J.: Atmospheric chemistry of oxygenated volatile
- 997 organic compounds: Impacts on air quality and climate, Chem Rev, 115, 3984-4014,
- 998 https://doi.org/10.1021/cr500549n, 2015.
- 999 Millet, D. B., Apel, E., Henze, D. K., Hill, J., Marshall, J. D., Singh, H. B., and Tessum, C. W.:
- 1000 Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts
- of Ethanol Fuel Use, Environmental Science & Technology, 46, 8484–8492, 2012.
- 1002 Min, K.-E., Washenfelder, R. a., Dubé, W. P., Langford, a. O., Edwards, P. M., Zarzana, K. J.,
- 1003 Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption
- spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide,
- and water vapor, Atmos Meas Tech, 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, 2016.
- 1006 Müller, M., Mikoviny, T., Feil, S., Haidacher, S., Hanel, G., Hartungen, E., Jordan, A., Märk, L.,
- 1007 Mutschlechner, P., Schottkowsky, R., Sulzer, P., Crawford, J. H., and Wisthaler, A.: A compact
- 1008 PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high
- spatiotemporal resolution, Atmos Meas Tech, 7, 3763–3772, https://doi.org/10.5194/amt-7-3763-
- 1010 2014, 2014.
- Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J.,
- Blake, D. R., Brune, W. H., Choi, Y., Corr, C. A., de Gouw, J. A., Dibb, J., DiGangi, J. P., Diskin,
- 1013 G. S., Fried, A., Huey, L. G., Kim, M. J., Knote, C. J., Lamb, K. D., Lee, T., Park, T., Pusede, S.
- 1014 E., Scheuer, E., Thornhill, K. L., Woo, J.-H., and Jimenez, J. L.: Secondary organic aerosol
- 1015 production from local emissions dominates the organic aerosol budget over Seoul, South Korea,
- during KORUS-AO, Atmos Chem Phys, 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-
- 1017 2018, 2018.

- 1018 Nihill, K. J., Ye, Q., Majluf, F., Krechmer, J. E., Canagaratna, M. R., and Kroll, J. H.: Influence
- 1019 of the NO/NO₂ Ratio on Oxidation Product Distributions under High-NO Conditions, Environ Sci
- Technol, 55, 6594–6601, https://doi.org/10.1021/acs.est.0c07621, 2021.
- 1021 Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an
- overview with emphasis on recent issues of atmospheric significance, Chem Soc Rev, 41, 6294–
- 1023 6317, https://doi.org/10.1039/c2cs35166h, 2012.
- 1024 Park, R. J., Oak, Y. J., Emmons, L. K., Kim, C. H., Pfister, G. G., Carmichael, G. R., Saide, P. E.,
- 1025 Cho, S. Y., Kim, S., Woo, J. H., Crawford, J. H., Gaubert, B., Lee, H. J., Park, S. Y., Jo, Y. J.,
- 1026 Gao, M., Tang, B., Stanier, C. O., Shin, S. S., Park, H. Y., Bae, C., and Kim, E.: Multi-model
- intercomparisons of air quality simulations for the KORUS-AQ campaign, Elementa, 9, 1–29,
- 1028 https://doi.org/10.1525/elementa.2021.00139, 2021.
- 1029 Perring, A. E., Bertram, T. H., Farmer, D. K., Wooldridge, P. J., Dibb, J., Blake, N. J., Blake, D.
- 1030 R., Singh, H. B., Fuelberg, H., Diskin, G., Sachse, G., and Cohen, R. C.: The production and
- 1031 persistence of ΣRONO₂ in the Mexico City plume, Atmos Chem Phys, 10, 7215–7229,
- 1032 https://doi.org/10.5194/acp-10-7215-2010, 2010.
- 1033 Perring, A. E., Pusede, S. E., and Cohen, R. C.: An observational perspective on the atmospheric
- impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol., Chem Rev,
- 1035 113, 5848–70, https://doi.org/10.1021/cr300520x, 2013.
- 1036 Peterson, D. A., Hyer, E. J., Han, S. O., Crawford, J. H., Park, R. J., Holz, R., Kuehn, R. E.,
- 1037 Eloranta, E., Knote, C., Jordan, C. E., and Lefer, B. L.: Meteorology influencing springtime air
- 1038 quality, pollution transport, and visibility in Korea, Elementa, 7,
- 1039 https://doi.org/10.1525/elementa.395, 2019.
- 1040 Picquet-Varrault, B., Suarez-Bertoa, R., Duncianu, M., Cazaunau, M., Pangui, E., David, M.,
- Doussin, J., Cnrs, U. M. R., Créteil, U. P., Paris, U. De, Pierre, I., and Laplace, S.: Photolysis and
- 1042 oxidation by OH radicals of two carbonyl nitrates: 4-nitrooxy-2-butanone and 5-nitrooxy-2-
- 1043 pentanone, Atmos Chem Phys, 20, 487–498, https://doi.org/10.5194/acp-20-487-2020, 2020.
- Rao, H., Fullana, A., Sidhu, S., and Carbonell-barrachina, Á. A.: Emissions of volatile aldehydes
- 1045 from heated cooking oils, Food Chem, 120, 59–65,
- 1046 https://doi.org/10.1016/j.foodchem.2009.09.070, 2010.
- 1047 Ren, X., Duin, D. Van, Cazorla, M., Chen, S., Mao, J., Zhang, L., Brune, W. H., Flynn, J. H.,
- 1048 Grossberg, N., Lefer, B. L., Rappenglück, B., Wong, K. W., Tsai, C., Stutz, J., Dibb, J. E., Jobson,
- 1049 B. T., Luke, W. T., and Kelley, P.: Atmospheric oxidation chemistry and ozone production:
- 1050 Results from SHARP 2009 in Houston, Texas, Journal of Geophysical Research: Atmospheres,
- 1051 118, 5770–5780, https://doi.org/10.1002/jgrd.50342, 2013.
- Richter, D., Weibring, P., Walega, J. G., Fried, A., Spuler, S. M., and Taubman, M. S.: Compact
- highly sensitive multi-species airborne mid-IR spectrometer, Applied Physics B, 119, 119–131,
- 1054 https://doi.org/10.1007/s00340-015-6038-8, 2015.
- Rosen, R. S., Wood, E. C., Wooldridge, P. J., Thornton, J. A., Day, D. A., Kuster, W., Williams,
- 1056 E. J., Jobson, B. T., and Cohen, R. C.: Observations of total alkyl nitrates during Texas Air Quality
- 1057 Study 2000: Implications for O₃ and alkyl nitrate photochemistry, J Geophys Res, 109, D07303,
- 1058 https://doi.org/10.1029/2003JD004227, 2004.

- 1059 Sachse, G. W., Hill, G. F., Wade, L. O., and Perry, M. G.: Fast-Response, High-Precision Carbon
- 1060 Monoxide Sensor using a Tunable Diode Laser Absorption Technique, Journal of Geophysical
- 1061 Research: Atmospheres, 92, 2071–2081, https://doi.org/doi:10.1029/JD092iD02p02071, 1987.
- 1062 Sai, S., Ho, H., Yu, J. Z., Chu, K. W., Yeung, L. L., Sai, S., Ho, H., Yu, J. Z., Chu, K. W., and
- 1063 Yeung, L. L.: Carbonyl Emissions from Commercial Cooking Sources in Hong Kong Carbonyl
- 1064 Emissions from Commercial Cooking Sources in Hong Kong, J Air Waste Manage Assoc, 56,
- 1065 1091–1098, https://doi.org/10.1080/10473289.2006.10464532, 2012.
- 1066 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development
- of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic
- volatile organic compounds, Atmos Chem Phys, 3, 161–180, https://doi.org/10.5194/acp-3-161-
- 1069 2003, 2003.
- 1070 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of Emissions
- from Air Organic Compounds from Cooking with Seed Oils, Environ Sci Technol, 36, 567–575,
- 1072 https://doi.org/10.1021/es002053m, 2002.
- 1073 von Schneidemesser, E., McDonald, B. C., Denier van der Gon, H., Crippa, M., Guizzardi, D.,
- Borbon, A., Dominutti, P., Huang, G., Jansens-Maenhout, G., Li, M., Ou-Yang, C. F., Tisinai, S.,
- and Wang, J. L.: Comparing Urban Anthropogenic NMVOC Measurements With Representation
- in Emission Inventories—A Global Perspective, Journal of Geophysical Research: Atmospheres,
- 1077 128, https://doi.org/10.1029/2022JD037906, 2023.
- 1078 Schroeder, J. R., Crawford, J. H., Ahn, J. Y., Chang, L., Fried, A., Walega, J., Weinheimer, A.,
- 1079 Montzka, D. D., Hall, S. R., Ullmann, K., Wisthaler, A., Mikoviny, T., Chen, G., Blake, D. R.,
- Blake, N. J., Hughes, S. C., Meinardi, S., Diskin, G., Digangi, J. P., Choi, Y., Pusede, S. E., Huey,
- 1081 G. L., Tanner, D. J., Kim, M., and Wennberg, P.: Observation-based modeling of ozone chemistry
- in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ),
- 1083 Elementa, 8, https://doi.org/10.1525/elementa.400, 2020.
- Seo, J., Park, D. R., Kim, J. Y., Youn, D., Lim, Y. Bin, and Kim, Y.: Effects of meteorology and
- emissions on urban air quality: a quantitative statistical approach to long-term records (1999 –
- 1086 2016) in Seoul, South Korea, Atmos Chem Phys, 18, 16121–16137, 2018.
- 1087 Shetter, R. E. and Müller, M.: Photolysis frequency measurements using actinic flux
- 1088 spectroradiometry during the PEM-Tropics mission: Instrumentation description and some results,
- 1089 Journal of Geophysical Research-Atmospheres, 104, 5647–5661,
- 1090 https://doi.org/10.1029/98JD01381, 1999.
- Simpson, I. J., Blake, D. R., Blake, N. J., Meinardi, S., Barletta, B., Hughes, S. C., Fleming, L. T.,
- 1092 Crawford, J. H., Diskin, G. S., Emmons, L. K., Fried, A., Guo, H., Peterson, D. A., Wisthaler, A.,
- Woo, J., Barré, J., Gaubert, B., Kim, J., Kim, M. J., Kim, Y., Knote, C., Mikoviny, T., Sally, E.,
- 1094 Schroeder, J. R., Wang, Y., Wennberg, P. O., and Zeng, L.: Characterization, sources and
- 1095 reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during
- 1096 KORUS-AQ, Elementa: Science of the Anthropocene, 8, 37,
- 1097 https://doi.org/10.1525/elementa.434, 2020.
- 1098 Sprengnether, M. M., Demerjian, K. L., Dransfield, T. J., Clarke, J. S., Anderson, J. G., and
- 1099 Donahue, N. M.: Rate Constants of Nine C6-C9 Alkanes with OH from 230 to 379 K: Chemical
- 1100 Tracers for [OH], J Phys Chem A, 113, 5030–5038, https://doi.org/10.1021/jp810412m, 2009.

- Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M.,
- 1102 Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.:
- 1103 Experimental budgets of OH, HO₂, and RO₂ radicals and implications for ozone formation in the
- 1104 Pearl River Delta in China 2014, Atmos Chem Phys, 19, 7129–7150, https://doi.org/10.5194/acp-
- 1105 19-7129-2019, 2019.
- 1106 Teng, A. P., Crounse, J. D., Lee, L., St Clair, J. M., Cohen, R. C., and Wennberg, P. O.: Hydroxy
- 1107 nitrate production in the OH-initiated oxidation of alkenes, Atmos Chem Phys, 15, 4297–4316,
- 1108 https://doi.org/10.5194/acp-15-4297-2015, 2015.
- 1109 Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO₂: In-situ laser-induced
- 1110 fluorescence detection at parts per trillion mixing ratios, Anal Chem, 72, 528-539,
- 1111 https://doi.org/doi:10.1021/ac9908905, 2000.
- 1112 Travis, K. R., Crawford, J. H., Chen, G., Jordan, C. E., Nault, B. A., Kim, H., Jimenez, J. L.,
- 1113 Campuzano-Jost, P., Dibb, J. E., Woo, J. H., Kim, Y., Zhai, S., Wang, X., McDuffie, E. E., Luo,
- 1114 G., Yu, F., Kim, S., Simpson, I. J., Blake, D. R., Chang, L., and Kim, M. J.: Limitations in
- representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ,
- 1116 Atmos Chem Phys, 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, 2022.
- 1117 Tuite, K., Thomas, J. L., Veres, P. R., and Roberts, J. M.: Quantifying Nitrous Acid Formation
- 1118 Mechanisms Using Measured Vertical Profiles During the CalNex 2010 Campaign and 1D
- 1119 Column Modeling, Journal of Geophysical Research: Atmospheres, 126, e2021JD034689,
- 1120 https://doi.org/10.1029/2021JD034689, 2021.
- 1121 Wang, W., Yuan, B., Peng, Y., Su, H., Cheng, Y., Yang, S., Wu, C., Qi, J., Bao, F., Huangfu, Y.,
- 1122 Wang, C., Ye, C., Wang, Z., Wang, B., Wang, X., Song, W., Hu, W., Cheng, P., Zhu, M., Zheng,
- 1123 J., and Shao, M.: Direct observations indicate photodegradable oxygenated volatile organic
- 1124 compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere,
- 1125 Atmos Chem Phys, 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, 2022.
- 1126 Wargocki, P., Weschler, J., and Williams, J.: Assessment of aldehyde contributions to PTR-MS
- 1127 m/z 69.07 in indoor air measurements, Environmental Science: Atmospheres, Advance Ar,
- 1128 https://doi.org/10.1039/d3ea00055a, 2023.
- Weinheimer, A. J., Walega, J. G., Ridley, B. A., Gary, B. L., Blake, D. R., Blake, N. J., Rowland,
- 1130 F. S., Sachse, G. W., Anderson, B. E., and Collins, J. E.: Meridional distributions of NO_x, NO_y,
- and other species in the lower stratosphere and upper troposphere during AASE II, Geophys Res
- 1132 Lett, 21, 2583–2586, https://doi.org/10.1029/94GL01897, 1994.
- Whalley, L. K., Stone, D., Bandy, B., Dunmore, R., Hamilton, J. F., Hopkins, J., Lee, J. D., Lewis,
- 1134 A. C., and Heard, D. E.: Atmospheric OH reactivity in central London: observations, model
- predictions and estimates of in situ ozone production, Atmos Chem Phys, 16, 2109–2122,
- 1136 https://doi.org/10.5194/acp-16-2109-2016, 2016.
- Whalley, L. K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A. C.,
- Williams, P., Kleffmann, J., Laufs, S., and Woodward-massey, R.: Understanding in situ ozone
- 1139 production in the summertime through radical observations and modelling studies during the Clean
- 1140 air for London project (ClearfLo), Atmos Chem Phys, 18, 2547–2571.
- 1141 https://doi.org/10.5194/acp-18-2547-2018, 2018.

- Whalley, L. K., Slater, E. J., Woodward-massey, R., Ye, C., Lee, J. D., Squires, F., Mehra, A.,
- Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H., and Percival, C. J.: Evaluating the sensitivity of
- radical chemistry and ozone formation to ambient VOCs and NO_x in Beijing, Atmos Chem Phys,
- 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, 2021.
- Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D
- 1147 Atmospheric Modeling (F0AM) v3.1, Geosci Model Dev, 9, 3309–3319,
- 1148 https://doi.org/10.5194/gmd-9-3309-2016, 2016.
- Wooldridge, P. J., Perring, A. E., Bertram, T. H., Flocke, F. M., Roberts, J. M., Singh, H. B., Huey,
- 1150 L. G., Thornton, J. A., Wolfe, G. M., Murphy, J. G., Fry, J. L., Rollins, A. W., LaFranchi, B. W.,
- and Cohen, R. C.: Total Peroxy Nitrates (ΣPNs) in the atmosphere: the Thermal Dissociation-Laser
- 1152 Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements,
- 1153 Atmos Meas Tech, 3, 593–607, https://doi.org/DOI 10.5194/amt-3-593-2010, 2010.
- Xu, Y., Feng, X., Chen, Y., Zheng, P., Hui, L., Chen, Y., Yu, J. Z., and Wang, Z.: Development
- of an enhanced method for atmospheric carbonyls and characterizing their roles in photochemistry
- 1156 in subtropical Hong Kong, Science of The Total Environment, 896, 165135,
- 1157 https://doi.org/10.1016/j.scitotenv.2023.165135, 2023.
- 1158 Yang, G., Huo, J., Wang, L., Wang, Y., Wu, S., Yao, L., Fu, Q., and Wang, L.: Total OH Reactivity
- 1159 Measurements in a Suburban Site of Shanghai J, Journal of Geophysical Research: Atmospheres,
- 1160 127, 1–20, https://doi.org/10.1029/2021JD035981, 2022.
- 1161 Yeh, G. K. and Ziemann, P. J.: Alkyl nitrate formation from reactions of C8-C14 n-alkanes with
- 1162 OH radicals in the presence of NOx: Measured yields with essential corrections for gas-wall
- 1163 partitioning, Journal of Physical Chemistry A, 118, 8147–8157,
- 1164 https://doi.org/10.1021/jp500631v, 2014.
- 1165 Yeo, M. J. and Kim, Y. P.: Long-term trends of surface ozone in Korea, J Clean Prod, 294, 125352,
- 1166 https://doi.org/10.1016/j.jclepro.2020.125352, 2021.
- Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y.,
- 2168 Zhang, J., and Hu, M.: Volatile organic compounds (VOCs) in urban air: How chemistry affects
- the interpretation of positive matrix factorization (PMF) analysis, Journal of Geophysical
- 1170 Research: Atmospheres, 117, n/a-n/a, https://doi.org/10.1029/2012JD018236, 2012.
- Zare, A., Romer, P. S., Nguyen, T., Keutsch, F. N., Skog, K., and Cohen, R. C.: A comprehensive
- 1172 organic nitrate chemistry: Insights into the lifetime of atmospheric organic nitrates, Atmos Chem
- 1173 Phys, 18, 15419–15436, https://doi.org/10.5194/acp-18-15419-2018, 2018.
- Zhao, Y., Hennigan, C. J., May, A. A., Tkacik, D. S., De Gouw, J. A., Gilman, J. B., Kuster, W.
- 1175 C., Borbon, A., and Robinson, A. L.: Intermediate-volatility organic compounds: A large source
- 1176 of secondary organic aerosol, Environ Sci Technol, 48, 13743–13750,
- 1177 https://doi.org/10.1021/es5035188, 2014.
- 1178 Zhou, Z., Tan, Q., Deng, Y., Song, D., Wu, K., Zhou, X., Huang, F., Zeng, W., and Lu, C.:
- 1179 Compilation of emission inventory and source profile database for volatile organic compounds:
- 1180 A case study for Sichuan, China, Atmos Pollut Res, 11, 105–116,
- 1181 https://doi.org/10.1016/j.apr.2019.09.020, 2020.

1183 Tables

Table 1. Reactions described in text along with associated rate constants and references for those rate constants.

	Reaction	Reaction Rate	Reference
R1a	VOC+OH $\stackrel{\text{O}_2}{\rightarrow}$ RO $\stackrel{\cdot}{_2}$	Varies	Atkinson (2003); Atkinson and Arey(2003); Atkinson et al. (2006); Bohn and Zetzsch (2012); Sprengnether et al. (2009)
R1b	$VOC+hv \xrightarrow{O_2} RO_2$	Varies/Measured	Shetter & Müller (1999)
R2a	$RO_2+NO \rightarrow (1-\alpha) RO + (1-\alpha) NO_2$	2.7×10 ⁻¹¹ ×exp(390/T)	Burkholder et al. (2020)
R2b	$RO_2^{\cdot}+NO \rightarrow \alpha RONO_2$	2.7×10 ⁻¹¹ ×exp(390/T)	Burkholder et al. (2020)
R3	$NO_2 + hv \rightarrow NO + O(^3P)$	Measured on DC-8	Shetter & Müller (1999)
R4	$O(^3P) + O_2 \rightarrow O_3$	$3.2 \times 10^{-11} \times \exp(67/T)$	Saunders et al. (2003)
R5	$RO'+O_2 \rightarrow R(O)+HO_2$	Assumed Instantaneous	
R6	$HO_2+NO \rightarrow OH+NO_2$	$3.45 \times 10^{-12} \times \exp(270/T)$	Saunders et al. (2003)
R7	RCHO+OH $\stackrel{\text{O}_2}{\rightarrow}$ R(O)O ₂	Varies	Atkinson (2003); Atkinson and Arey(2003); Atkinson et al. (2006)
R8ª	$R(O)O_2 + NO_2 \leftrightarrow R(O)O_2NO_2$	F: 8.69×10 ⁻¹² cm ³ molec. ⁻¹ s ⁻¹ R: 4.30×10 ⁻⁴ s ⁻¹	Burkholder et al. (2020)
R9	$R(O)O_2+NO \rightarrow RO_2^{\cdot}+NO_2$	8.1×10 ⁻¹² ×exp(270/T)	Burkholder et al. (2020)
R10	$O_3 + NO \rightarrow O_2 + NO_2$	2.07×10 ⁻¹² ×(-1400/T)	Burkholder et al. (2020)
R11 ^b	$OH+ NO_2 \rightarrow HNO_3$	1.24×10 ⁻¹¹ cm ³ molec. ⁻¹ s ⁻¹	Burkholder et al. (2020)
R12	O_3 +hv $\xrightarrow{H_2O}$ 2O(1 D)	hv measured on DC-8; 2.14×10 ⁻¹⁰ cm ³ molec. ⁻¹ s ⁻¹	Shetter & Müller (1999); Saunders et al. (2003)
R13	$O_3+OH \rightarrow HO_2+O_2$	1.7×10 ⁻¹² ×exp(-940/T)	Saunders et al. (2003)
R14	$O_3 + HO_2 \rightarrow OH + 2O_2$	1.0×10 ⁻¹⁴ ×exp(-490/T)	Burkholder et al. (2020)
R15 ^b	$HO_2+HO_2 \xrightarrow{H_2O} H_2O_2$	5.06×10 ⁻¹² cm ³ molec. ⁻¹ s ⁻¹	Saunders et al. (2003)
R16	$HO_2 + RO_2 \rightarrow Products$	$2.91 \times 10^{-13} \times \exp(1300/T)$	Saunders et al. (2003)
R17	$HO_2+OH \rightarrow Products$	4.80×10 ⁻¹¹ ×exp(250/T)	Burkholder et al. (2020)

R18 ^b	OH+NO → HONO	7.40×10 ⁻¹² cm ³ molec. ⁻¹ s ⁻¹	Burkholder et al. (2020)
R19	$HO_2+R(0)O_2 \rightarrow Products$	4.30×10 ⁻¹³ ×exp(1040/T)	Burkholder et al. (2020)

 a Only showing forward (F) and reverse (R) rate constant at 298 K and 1013 hPa and being a termolecular reaction.

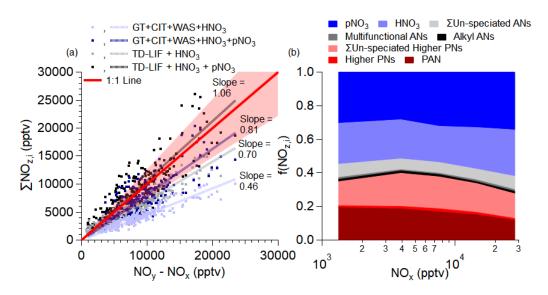
1188 bTermolecular reaction; only showing rate at 298 K and 1013 hPa

1189 **Table 2.** List of instruments, compounds measured, accuracy/precision, and associated references used in this study.

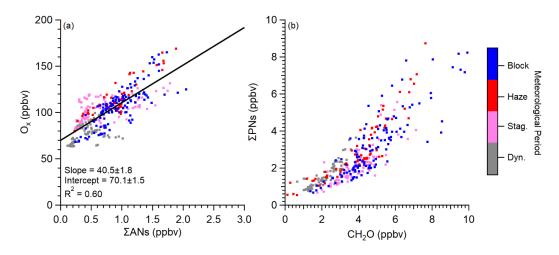
Instrument	Species	References
University of California, Irvine, Whole Air Sampler (WAS)	Ethane, Ethene, Ethyne, Propane, Propene, i-Butane, n-Butane, 1-Butene, i-Butene, trans-2-Butene, cis-2-Butene i-Pentane, n-Pentane, 1,3-Butadiene, Isoprene, n-Hexane, n-Heptane, n-Octane, n-Nonane, n-Decane, 2,3-Dimethylbutane, 2-Methylpentane, 3-Methylpentane, Cyclopentane, Methylcyclopentane, Cyclohexane, Methylcyclohexane, Benzene, Toluene, m+p-Xylene, o-Xylene, Ethylbenzene, Styrene, i-Propylbenzene, n-Propylbenzene, 3-Ethyltoluene, 4-Ethyltoluene, 2-Ethyltoluene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, methyl nitrate, Ethyl nitrate, i-Propyl nitrate, n-Propyl nitrate, 2-Butyl nitrate, 3-Pentyl nitrate, 2-Pentyl nitrate, 3-Methyl-2-Butyl nitrate	Simpson et al. (2020)
The Pennsylvania State University Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS)	OH, HO ₂ , OH Reactivity	Faloona et al. (2004), Mao et al. (2009), Brune et al. (2019)
University of California, Berkeley, Thermal Dissociation-Laser Induced Fluorescence (TD-LIF)	NO_2 , ΣPNs , ΣANs	Thornton et al. (2000), Day et al. (2002), Wooldridge et al. (2010)
NASA Langley Diode Laser Hygrometer (DLH)	H_2O	Diskin et al. (2002)
NASA Langley Diode Laser Spectrometer Measurements (DACOM)	CO, CH ₄	Sachse et al. (1987)
University of Colorado, Boulder, Compact Atmospheric Multi-species Spectrometer (CAMS)	CH ₂ O, C ₂ H ₆	Richter et al. (2015), Fried et al. (2020)
Gwangju Institute of Science and Technology Korean Airborne Cavity Enhances Spectrometer (K-ACES)	СНОСНО	Min et al. (2016), D. Kim et al. (2022)

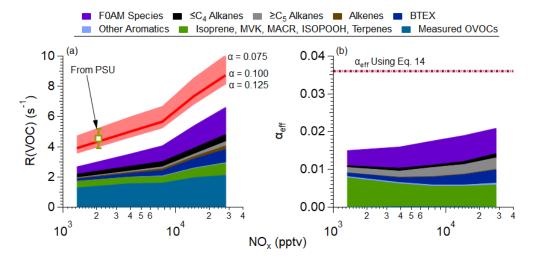


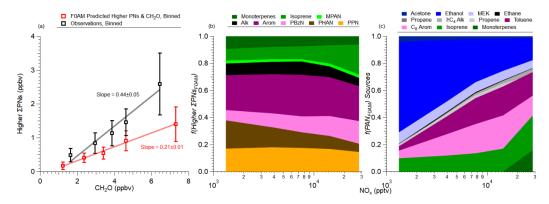
Spectroradiometers (CAFS)		(1999)
Georgia Institute of Technology Chemical Ionization Mass Spectrometer (GT)	O ₂ , PAN, PPN, APAN, PBzN	Kim et al. (2007), Lee et al. (2022)
University of Colorado, Boulder, High-Resolution Time-of-Flight Aerosol Mass Spectrometer	NO_3	Nault et al. (2018), Day et al. (2022)
NCAR 4-Channel Chemiluminescence Instrument No (NCAR)	IO, NO ₂ , O ₃ , NO _y	Weinheimer et al. (1994)
California Institute of Hymerocal Et Ionization Mass Spectrometer (CIT)	Sutene Hydroxynitrates, Butadiene Iydroxnitrates, Ethene Hydroxynitrates, Ithanal Nitrate, Isoprene Hydroxynitrates, ropene Hydroxynitrates, Propanal Nitrate, CH ₃ OOH, Peroxyacetic Acid, HNO ₃ , Iydroxyacetone, H ₂ O ₂	Crounse et al. (2006), Teng et al. (2015)
Transfer Reaction Time-of- Flight Mass Spectrometer To	Methanol, Acetaldehyde, Acetone+Propanal, soprene, MVK+MACR+ISOPOOH, Benzene, oluene, C8-alkylbenzenes, Monoterpenes, MEK	Müller et al. (2014)
<u> </u>	atitude, Longitude, Altitude, Temperature, ressure	Crawford et al. (2021)



1192 Figures


Figure 1. Binned NO_x mixing ratios observed on the NASA DC-8 during the KORUS-AQ campaign. Note, the color bar scale is logarithmic. The binning is along the flight paths of the NASA DC-8 for any observations collected below 2.0 km and after 11:00 local time. The rest of the NASA DC-8 flight paths not included in the analysis are shown in grey. Three key areas from KORUS-AQ are highlighted—the Olympic Park ground site, the airfield where the NASA DC-8 conducted routine missed approaches, and the Taehwa Research ground site. The histograms above and to the left are the distribution of NO_x mixing ratios longitudinally and latitudinally, respectively.


Figure 2. (a) Scatter plot of the summation of individual NO_z (NO_z is higher oxide NO_x products) measured by GT, CIT, WAS, TD-LIF, and AMS versus NO_z measured by difference between NO_y and NO_x (see Table 2 for compounds measured by each instrument). NO_x is NO measured by NCAR and NO_2 measured by LIF. The observations are for when the DC-8 was over the SMA. (b) Average contribution of measured speciated NO_z over the SMA during KORUS-AQ versus NO_x . Higher PNs is PPN + APAN + PBZN. Σ Un-speciated PNs is total peroxnitrates from TD-LIF minus total measurement from GT. Alkyl RONO₂ is the total small alkyl nitrate measurements from WAS. Multifunctional RONO₂ is the total measurements from CIT. Σ Un-speciated ANs is the total alkyl nitrates from TD-LIF minus total RONO₂ from CIT and WAS.


Figure 3. Scatter plot of (a) O_x versus ΣANs and (c) ΣPNs versus formaldehyde (CH₂O) over SMA (see Figure 1 for area studied). Data is colored by meteorological periods discussed in Peterson et al. (2019). Data plotted here is after 11:00 am LT to minimize impact of growing boundary layer and nocturnal residual layer mixing. The curvature in (c) is further explored in Figure S7.

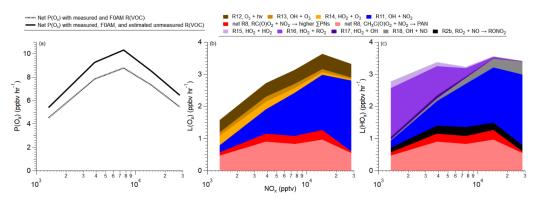

Figure 4. (a) Binned VOC reactivity versus NO_x observed over SMA during KORUS-AQ (see Figure 1 for the area studied). The measured observed R(VOC), labeled as "From PSU", where PSU is Pennsylvania State University, is the VOC reactivity calculated from the measured total OH reactivity with inorganic OH reactivity removed. As discussed in Brune et al. (2022), the OH reactivity has interferences at high NO_x mixing ratios. The error bar is the uncertainty in the OH reactivity measurement (Brune et al., 2022). The red line represents the calculated unmeasured R(VOC), using Eq. 11, with an assumed $\alpha = 0.10$. The shaded area represents different calculated unmeasured R(VOC), assuming different α for the unmeasured R(VOC) (see Eq. 11). (b) The calculated effective α from observations versus NO_x . The dashed purple line is the effective α estimated from Eq. 10, using the slope from Figure 3a. For both (a) and (b), the colored stacked data is the calculated VOC reactivity (a) and weighted effective α (b). The values from (b) are calculated using Eq. 11. Finally, for both (a) and (b), F0AM species is the reactivity for compounds not measured on the DC-8 predicted by F0AM with an estimated $\alpha = 0.05$. The associated uncertainty in using different α for the F0AM predicted reactivity is explored in Figure S4.

Figure 5. (a) Scatter plot of binned higher ΣPNs calculated using F0AM (red) or binned higher ΣPNs from observations (black) versus formaldehyde (CH₂O). Slopes shown are ODR fits to the binned data. (b) Fractional contribution of the higher PNs predicted from F0AM versus NO_x. (c) Fractional contribution of different precursors to PAN, predicted by F0AM versus NO_x. For both (b) and (c), Alk is all alkanes, Arom is all aromatics, and $\geq C_4$ Alk is all alkanes with 4 or more carbons. See Figure S8 for comparison of F0AM.

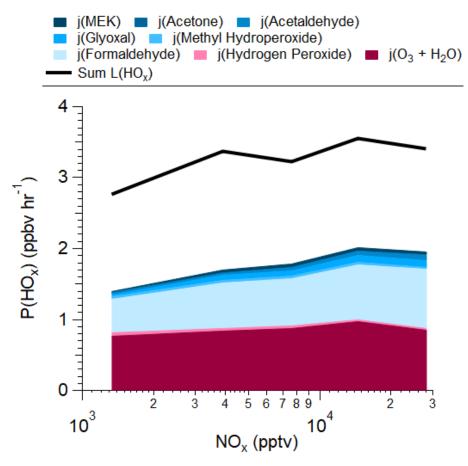


Figure 6.1242 and F0AN
1243 Contributi

Figure 6. (a) Net O_x ($O_3 + NO_2$) production (see Eq. 1 and 2) predicted for SMA using measured and F0AM R(VOC) (dashed) or total R(VOC) (solid), from Figure 4a, versus NO_x . (b) Contribution of different reactions to the total O_x loss versus NO_x . (c) Contribution of different reactions to total HO_x ($HO_x = OH + HO_2 + RO_2 + R(O)O_2$) loss versus NO_x . The predicted RO_2 comes from the total VOC reactivity calculated in Figure 4a assuming steady-state (Eq. 7), and HO_2 the acyl peroxy radicals are from F0AM results. Note for both (b) and (c), net $RC(O)O_2 + NO_2$ and net $CH_3C(O)O_2 + NO_2$ are described in Eq. 3. Radical reactions contributing < 1% to the $L(O_x)$ or $L(HO_x)$ are not included.

Figure 7. Calculated HO_x production from observations (colored stack) compared with the calculated HO_x loss from Figure 6c over the SMA during KORUS-AQ.